
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

2015

Neutrino and Antineutrino Induced Meson
Production
Libo Jiang
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Physics Commons

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Jiang, L.(2015). Neutrino and Antineutrino Induced Meson Production. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/3590

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarcommons.sc.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3590?utm_source=scholarcommons.sc.edu%2Fetd%2F3590&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

Neutrino and Antineutrino Induced Meson Production

by

Libo Jiang

Bachelor of Science
Northeast Forest University 2006

Master of Science
Harbin Institute of Technology 2008

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Physics

College of Arts and Sciences

University of South Carolina

2015

Accepted by:

Roberto Petti, Major Professor

Vitaly Rassolov, Committee Member

Steffen Strauch, Committee Member

Jeffery Wilson, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies



www.manaraa.com

c© Copyright by Libo Jiang, 2015
All Rights Reserved.

ii



www.manaraa.com

Dedication

This dissertation is dedicated to my family.

iii



www.manaraa.com

Acknowledgments

First of all, great gratitude to Professor Roberto Petti and Professor Sanjib Mishra.

They gave me indispensable guidance and assistance to my work during the past few

years and let me know how beautiful the physics is. 5 years ago, they warmly brought

me into neutrino physics area, and are very thoughtful and helpful in supervision of

my research and schedule. They continued answering my queries endlessly.

Many thanks to my committee members, Dr. Vitaly Rassolov, Dr. Steffen

Strauch, and Dr. Jeff Wilson. Their guidance and help are very important to my

research.

Many thanks to my colleagues and friends at University of South Carolina: Xinch-

-un Tian, Chris Kullenberg, Brian Mecurio, Jae Jun Kim, Kevin Wilson, Hongyue

Duyang, Andrew Svenson, Kevin Wood, Tyler Alion, and Bing Guo. During the past

few years, they gave me a lot of help and I had the pleasure of working with them.

I would also like to say a few works to thank Dr. Huifeng Fu, and Dr. Tian-

hong Wang. They helped a lot in my theoretical calculations and understanding the

electroweak theory.

Thank to the excellent work of the collaborators from ELBNF/DUNE, NOMAD

collaborations.

At the end, thank to everyone I mentioned and those I forgot, thank you very

much.

iv



www.manaraa.com

Abstract

Coherent meson production measurement is very important in physics research. First,

the coherent pion production is a potential background to ν oscillation in next gen-

eration of Long Base Line Experiment(ELBNF/DUNE); second, coherent pion and

coherent ρ production provide a detailed test of CVC and PCAC hypothesis; third, co-

herent meson production can be used to monitor the neutrino and anti-neutrino fluxes

in the experiment. This dissertation focuses on two parts: coherent π− production in

NOMAD, and coherent ρ simulation using LBNF fluxes. With the NOMAD data, the

ratio between cross-sections of coherent π− and ν̄µ charged current interactions was

measured and compared with the measurements of coherent π+. The experience of

coherent π analysis may be used to evaluate the sensitivity of ELBNF/DUNE project

to coherent processes. With the ELBNF process, I wrote a new C++ simulation pack-

age and generated 100k coherent ρ+ events. It is known that for the neutrino-induced

process, the incoming neutrino fluxes could not be measured directly, and the Q2 and

other variables related to it are unknown in the neutrino-induced neutral current

interactions. The photon-induced coherent ρ0 provides a way to get additional in-

formation to constrain the incoming neutrino fluxes. I calculated the ratios between

the cross-sections of neutrino-induced coherent ρ±, ρ0 and photon-induced coherent

ρ0. With these ratios, some kinematic variable distributions are reweighted with this

ratio in this thesis.
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Chapter 1

Electroweak Theory and Neutrino Interaction

1.1 Weak Interaction and Electroweak Theory

Theoretically, all the interactions between particles can be classified into four funda-

mental interactions and listed in order of decreasing strength as: the strong inter-

action, electromagnetism, the weak interaction, and gravity. The weak interaction

operates between all particles except photons and gravitons. It causes reactions which

make particles ultimately decay into the stable leptons and hadrons, such as electrons,

neutrinos, protons, and so on. These decays are the natural sources for us to study

the weak interaction, however, only in a limited energy region. The advent of neu-

trino experiments in humans’ laboratories ameliorated the situation by enabling us

to explore weak interactions in a much wider energy region. The neutrino-hadron

scattering is one such experiment.

The neutrino-hadron scattering can be classified with the help of a plane composed

of Q2 and ν [16], where Q2 and ν are the square of the momentum transfer and

the energy transfer between the initial and final leptons respectively (Q2 and ν are

defined in chapter 2). Figure 1.1 shows the weak interactions with respect to Q2 and

ν. In this figure, Region I with very small Q2 and ν represents weak decays; Region

II (diagonal line) represents (quasi-)elastic scattering; Region III is the resonance

region, starting with the line W = M +mπ(W is the hadronic mass, M is the proton

mass, mπ is the pion mass); Region IV with high values of Q2 and ν is the domain

of deep inelastic scattering; And region V with low Q2 and high ν values is coherent

1
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scattering, which is the focus of this thesis. In this Region, the interactions with very

low Q2 allow study two basic properties of the weak current: One is the conservation

of the vector current (It is also called CVC hypothesis), which was introduced to

explain the equality of the vector muon and nuclear beta decay. The other one is the

partial conservation of the axial current (It is also called PCAC hypothesis) which

can be used to explain the small (∼ 20%) renormalization of the nuclear axial decay

constant by the strong interactions [36]. When the Q2 is very low, the nuclear stays

intact in coherent process, then the nucleons inside can not be considered as free. In

this case, the perturbative theory of strong interactions can not be used. To study

the processes with very low Q2, the Hadron Dominance Model has been brought up

to describe the hadronic behavior in coherent process, which is going to be introduced

in this chapter. Therefore, the study of coherent meson production can also provide

a detailed test of Hadron Dominance Model.

Q
2
(G

eV
2
)

2Mν(GeV 2)
I

II

III

IV

V

x = 1 W = M + mπ

x = C

Figure 1.1: The (Q2, ν) plane in neutrino interactions [36].
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Space-Time Structure of the Weak Charged and Neutral

Current

This subsection gives basics of electroweak theory (which can be found in many

textbooks, such as [33] and [30]). For convenience, we give the convention for the

Dirac matrices in this thesis as follows.

Let {γµ, µ = 0, 1, 2, 3} be an orthonormal set of vectors in space-time. The signa-

ture of space-time is expressed by the equations:

γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1, (1.1)

γµ = gµνγ
ν , (1.2)

and the matrices follow an anti-commutation relation:

{γµ, γν}+ = 1
2(γµγν + γνγµ) = gµν . (1.3)

As usual, a special multivector

iγ0γ1γ2γ3 = γ5 (1.4)

is introduced which can be used to construct peudoscalars. A multivetor is said to

be even (odd) if it commutes (anti-commutes) with γ5. A slashed 4-momentum (or

other 4-vector) represents the product of the 4-momentum (or other 4-vector) with

γµ.

In the Standard Model the electroweak interaction is described by a gauge field

theory. The gauge group is the SU(2)L × U(1)Y group, where L indicates that this

SU(2) group only acts on the left-handed components of fermion fields. The subscript

Y for U(1) group is called hypercharge and specifies this U(1) group.

The local SU(2)L × U(1)Y gauge invariance of the electroweak Lagrangian is

guaranteed by introducing the covariant derivative Dµ,

Dµ = ∂µ + igAiµτ
i + ig′Bµ

Y

2 , (1.5)

3
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where τ i = σi/2 (i = 1, 2, 3) with σi being the Pauli matrix. Aiµ and Bµ are gauge

boson fields. For each generator of the group, there is a gauge field. The covariant

derivative transforms as

Dµ → D′µ = U(θi(x), η(x))DµU
−1(θi(x), η(x)), (1.6)

where

U(θi(x), η(x)) = eiθ
i(x)τ i+iη(x)Y/2, (1.7)

with θi(x) and η(x) being the parameters of the transformation. Then the gauge

boson fields transform as

Aiµτ
i → A′

i
µτ

i = U(θj(x))[Aiµτ i −
i

g
∂µ]U−1(θi(x)), (1.8)

Bµ → B′µ = Bµ −
1
g′
∂µη(x). (1.9)

The interaction part of the Lagrangian can be written as

LI = −1
2 L̄L(g /Aiσi − g′ /B)LL −

1
2Q̄L(g /Aiσi + 1

3g
′ /B)QL

+g′ēR /BeR −
2
3g
′ūR /BuR + 1

3g
′d̄R /BdR, (1.10)

where LL and QL represent the left-handed lepton doublet and the left-handed quark

doublet in the fundamental representation of SU(2)L group respectively. Specifically,

for the first generation of the Standard Model,

LL =
(
νeL
eL

)
, QL =

(
uL
dL

)
. (1.11)

In order to see the interaction term for neutrinos explicitly, we take the explicit

form of the Pauli matrices and obtain

LI,L = −1
2

(
¯νeL eL

)


g /A3 − g′ /B g( /A1 − i /A2)

g( /A1 + i /A2) −g /A3 − g′ /B






νeL

eL




+g′ēR /BeR, (1.12)

4
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where we have omitted the quark part of the Lagrangian. This equation shows that

the interactions are inter-mediated by the mixtures of the gauge fields. The off-

diagonal terms of Equation (1.12) are conjugations of each other, so we can introduce

a complex field Wµ by

W µ ≡ Aµ1 − iAµ2√
2

. (1.13)

Replacing Aµ1 and Aµ2 with W µ, we have, for interactions between neutrinos and

electrons,

L(CC) = − g√
2
{ ¯νeL /WeL + ēL /W

†
νeL}

= − g

2
√

2
ν̄eγ

µ(1− γ5)eWµ +H.c.

= − g

2
√

2
jµW,LWµ +H.c., (1.14)

where

jµW,L = ν̄eγ
µ(1− γ5)e = 2ν̄eγµeL. (1.15)

The complex gauge field Wµ carries a charge which should be the electrical charge

to guarantee the conservation of electrical charge. So the current jµW,L is called the

(leptonic) charged current and the corresponding part of Lagrangian is indicated by

CC (which represents charged current) as a superscript (see Equation (1.14)).

The diagonal terms of Equation (1.12) are mixtures of Aµ3 and Bµ, so we can

introduce two fields Zµ and Aµ as the linear combinations of A3 and Bµ by

Aµ = sin θWAµ3 + cos θWBµ, (1.16)

Zµ = cos θWAµ3 − sin θWBµ, (1.17)

where θW is a parameter to be determined and is usually called the weak mixing angle

or Weinberg angle. Recalling that the electromagnetic interaction should come out of

the electroweak theory, we require that Aµ is just the photon field. This requirement

determines the Weinberg angle and the relation among the couplings g, g′ and the

electric coupling e.

5
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To see how this happens, let us pick up the neutral current (NC) Lagrangian from

Equation (1.12):

L(NC) = −1
2{ ¯νeL(g /A3 − g′ /B)νeL − ēL(g /A3 + g′ /B)eL − 2g′ēR /BeR}. (1.18)

Substituting Aµ3 and Bµ with Aµ and Zµ by using Equations (1.16) and (1.17), we

obtain

L(NC) = −1
2{ ¯νeL[g cos θW + g′ sin θW )/Z + (g sin θW − g′ cos θW ) /A]νeL

−ēL[g cos θW − g′ sin θW )/Z + (g sin θW + g′ cos θW ) /A]eL

−2g′ēR[− sin θW /Z + cos θW /A]eR}. (1.19)

As neutral particles, neutrinos should not interact with the electromagnetic field, so

we have

g sin θW = g′ cos θW . (1.20)

Now taking this relation back into Equation (1.19), we obtain

L(NC)
I,L = − g

2 cos θW
{ ¯νeL /ZνeL − (1− 2 sin2 θW )ēL /ZeL + 2 sin2 θW ēR /ZeR}

+g sin θW ē /Ae. (1.21)

The last term describes electrons interacting with photons, which is just what we

need for electromagnetic interactions, so the coupling g sin θW should be equal to the

electrical coupling e:

g sin θW = e. (1.22)

We have 4 parameters g, g′, e and θW with 2 equations (1.20) and (1.22), so in

principle, we can choose any two of them to describe the theory. From Equations

(1.20) and (1.22), we can also deduce

tan θW = g′

g
, (1.23)

and

g2 + g′2 = e2. (1.24)

6
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Experimentally, the value of sin2 θW can be extracted from neutral current pro-

cesses, and is different according to different renormalization prescriptions. In the

on-shell scheme, it is

sin2 θW = 1− M2
W

M2
Z

, (1.25)

where MW and MZ are the masses of W and Z respectively.

To sum up, the neutral current Lagrangian can be written as

L(NC) = LZ + Lγ, (1.26)

where Lγ is the electrodynamic (QED) Lagrangian (interaction part) and is given by

Lγ = −ejµγ,LAµ (1.27)

where the leptonic electromagnetic current jµγ,L is

jµγ,L = −ēγµe. (1.28)

The weak neutral current Lagrangian LZ is given by

LZ = − g

2 cos θW
jµZ,LZµ, (1.29)

where the leptonic weak neutral current is

jµZ,L = 2gνL ¯νeLγµνeL + 2gLēLγµeL + 2gRēRγµeR. (1.30)

The coefficients gνL, gL, and gR can be read off from Equation (1.21). Finally, the

leptonic weak neutral current can be written as

jµZ,L = ν̄eγ
µ(gνV − gνAγ5)νe + ēγµ(glV − glAγ5)e, (1.31)

where

gν,lV = gν,lL + gν,lR , (1.32)

gν,lA = gν,lL − gν,lR . (1.33)

7
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Following the same procedure, one can deduce the Lagrangian for quarks. The

corresponding interaction Lagrangian is

LI,Q = L(NC)
Q + L(CC)

Q

= −ejνγ,QAν −
g

2 cos θW
jνZ,QZν −

g

2
√

2
jνW,QWν −

g

2
√

2
(jνW,Q)†W †

ν . (1.34)

The first two terms after the second equality sign constitute the neutral current

Lagrangian while the last two terms constitute the charged current Lagrangian. The

quark weak charged current jνW,Q, the quark weak neutral current jνZ,Q and the quark

electromagnetic current jνγ,Q read, respectively,

jνW,Q = ūγν(1− γ5)d, (1.35)

jνZ,Q = ūγν(guV − guA)u+ d̄γν(gdV − gdAγ5)d, (1.36)

jνγ,Q = 2
3 ūγ

νu− 1
3 d̄γ

νd. (1.37)

For coefficients gu,dV and gu,dA , we have, in general,

gfL = If3 − qf sin2 θW , (1.38)

gfR = −qf sin2 θW , (1.39)

gfV = gfL + gfR = If3 − 2qf sin2 θW , (1.40)

gfA = gfL − gfR = If3 . (1.41)

where the superscript f denotes a specific fermion (lepton or quark) field. I3 is the

third component of the weak isospin and qf is the electrical charge of the correspond-

ing fermion.

We have shown that the electroweak interaction includes the weak interaction

which is inter-mediated by charged gauge fieldsW± and neutral gauge fields Z (Feyn-

man diagrams of these two interactions are shown in Figure 1.2), and the electromag-

netic interaction which is inter-mediated by photon fields.

8
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d, ν(ν̄) u, l−(l+)

W+(W−)

f = ν, l, q f = ν, l, q

Z0

Figure 1.2: Diagrams of Weak Charged and Neutral Current

The weak interaction is a short range interaction, because the gauge bosons are

massive. Roughly, we have Rweak (Range of Weak Interaction)

Rweak = ~c
MW c2 ≈ 2× 10−18m = 0.002fm� 0.1fm. (1.42)

Weak Current of Hadrons and the CVC and PCAC

hypothesis

The previous subsection gives the weak currents for leptons and quarks. In the real

world, quarks never show up as isolated particles, instead only hadrons which are

composed with quarks (as well as gluons) appear in experiments. For the coherent

pion and rho processes, we encounter weak current for nucleons.

In the quark model proton and neutron are the states of |uud〉 and |udd〉 re-

spectively. The weak interaction of these nucleons has more complicated structures

compared to that of leptons or bare quarks, because it suffers from other interactions

(mainly the strong interaction). However, the weak current of nucleons still consists

of a vector current Vα and an axial-vector current Aα according to Lorentz invariance

of the theory. So we may write

[Jweakhadron]α = Vα − Aα. (1.43)

Vα and Aα can be expressed as suitable Dirac matrices sandwiched between spinors

for nucleons. To specify, the vector current may consist of a γα term (corresponding to

a vector form factor or point-like interaction), a σαβqβ term (called weak magnetism;

9
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qβ is the four-momentum transferred and σαβ = 1
2 [γαγβ − γβγα]), and a qα term

(corresponding to an induced scalar form factor). The axial current may consist of a

γαγ5 term (corresponding to an axial-vector form factor or point-like interaction), a

σαβq
βγ5 term (pseudotensor form factor), and a qαγ5 term (induced pseudoscalar form

factor). Form factors for each term are dependent on the type of hadrons involved

and this is expressed as h1 and h2 indices.

Vα = ψ̄h1 [γαfh1h2
1 (Q2, ν)− iσαβqβfh1h2

2 (Q2, ν) + qαfh1h2
3 (Q2, ν)]ψh2 ,

Aα = ψ̄h1 [γαgh1h2
1 (Q2, ν)− iσαβqβgh1h2

2 (Q2, ν) + qαgh1h2
3 (Q2, ν)]γ5ψh2 ,

(1.44)

where ψh1(h2) represents the spinor of nucleon h1(h2) [51].

All the form factors fi and gi are real according to the time reversal invariance of

the strong interaction [27]. Furthermore, in the exact isospin invariance, one finds

f3(Q2) = 0, g2(Q2) = 0. (1.45)

As a consequence, the contraction of vector current Vα with qα vanishes, i.e., qαVα =

0. The f1 term vanishes due to the free Dirac equation for the nucleon spinors

(remember that in the isospin symmetric-case, the proton and neutron have the same

mass). The f2 term vanishes due to the anti-symmetric property of σαβ. On the

other hand, qαVα = 0 implies ∂αVα = 0 in the configuration space, i.e., the vector

current is conserved in the case that the strong interaction is isospin invariant. This

property was proposed in Ref. [25, 28] and is called the conserved vector current

(CVC) hypothesis.

Originally, the CVC hypothesis was proposed to explain why the vector current

is not renormalized by the strong interaction in the β decay experiment. In the

experiment, the nucleons have very small momentum transfer (Q2 ≈ 0). In this

region all the kinematic terms (those which include qα) become negligible and the

10
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weak current takes a form similar to that at the leptonic vertex

[Jweakhadron]α(Q2 = 0) = Vα − Aα

= ψ̄pγα(fpn1 (Q2 = 0)− gpn1 (Q2 = 0)γ5)ψn, (1.46)

and by definition

f1(0) = gV , g1(0) = gA. (1.47)

Experiments tell us that gV ' 1, which implies that the coupling of this hadronic

current is consistent with that of the corresponding leptonic current. Analogously to

the conservation of electrical current leading to the universality of electron/proton

charge, this universality of weak vector charge implies a conservation of the weak

vector current. It should be mentioned that the isospin is not an exact symmetry,

but is violated by the electromagnetic interactions, responsible for the mass difference

of u and d quarks (thus proton and neutron), so the vector current is not exactly

conserved. However, the violation of isospin symmetry is very small, so the CVC

hypothesis is a good approximation.

Now, we consider the axial current. Experiments tell us that gA ' 1.25, which is

different from unity. This implies that the axial-vector current is affected by strong in-

teractions and is not conserved. (In fact, if the axial current were conserved, the com-

monly observed pion decay π± → µ±ν would be forbidden.) For this non-conserved

axial current, there is another hypothesis, called partially conserved axial current

(PCAC) hypothesis, that relates the derivative of the axial current to the pion field,

which was first proposed in Ref. [26]. We will give more details about PCAC in the

next chapter.

The Goldberger-Treiman Relation

The CVC is a consequence of isospin invariance of the underlying theory, which

arises when the quarks’ masses are equal. When the quarks masses are zero, another

11
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symmetry arises, that is the chiral SU(2) symmetry. This chiral symmetry would

result in the conservation of the axial current, so that qαAα = 0. Now consider the

axial current of neutron-proton transition. From Equation (1.44), we have, for the g1

term:

qµAg1
µ = g1(q2)p̄(/p− /p′)γ5n

= −g1(q2)p̄ /p′γ5n− g1(q2)p̄γ5/pn

= −(mp +mn)g1(q2)p̄γ5n, (1.48)

and for the g3 term:

qµAg3
µ = p̄q2g3γ5n. (1.49)

The g2 term vanishes automatically. Then we have

(mp +mn)g1(q2) = q2g3(q2). (1.50)

From this equation, we see that, either g1 goes to zero as q2 → 0 or g3(q2) has a pole.

From experiments, we have known that g1(0) = gA ' 1.25, so g3(q2) should have a

pole at q2 → 0. This pole is due to the interaction of pions with the weak current of

hadrons, which gives a contribution

qµ

q2 fπ
√

2gπNN p̄γ5n (1.51)

to the matrix element of the axial vector current.

Comparing Equation (1.50) and Equation (1.51), we obtain

mNgA = gπgπNN√
2

, (1.52)

where the proton mass and neutron mass are taken as the same and mN = mp = mn.

This is the Goldberger-Treiman relation [31].
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Vector Meson Dominance Model(VMD) and Hadron

Dominance Model(HDM)

The discussion of the previous subsection tells us that the axial vector current of

hadrons receives contributions from interactions with pions, and sheds light on how

to treat the hadron currents. For example, the electrical current of hadrons may be

treated with the so called the Vector Meson Dominance Model (VMD) (details of

this model can be found in Refs. [13, 32]) where the amplitude of a photon scattering

off a hadron is obtained by summing over the amplitudes of dominant vector meson-

hadron scatterings (multiplied by corresponding meson propagators). Specifically one

has

M(γ + α→ β) =
∑

V=ρ0,ω,φ

e

gV

m2
V

Q2 +m2
V

M(V + α→ β), (1.53)

where mV is the mass of corresponding meson and em
2
V

gV
is the coupling constant of

the vector meson to the photon. The foundation of this model is the observation that

the photon-induced processes exhibit hadronic properties as shown in Figure 1.3.

The total cross-sections of photon-induced processes and pion-nucleon scatterings

have similar resonance structures at low energy, but become structureless at higher

energy.

On the theoretical side, the VMD model assumes the photon state |γ > is the

superposition of a "bare" photon state(|γB >) and a sum of hadronic states with the

same quantum numbers as the photon (JPC = 1−−, Q = B = S = 0). Then the state

vector could be written as

|γ >'
√
Z3|γB > +√αem|h >, (1.54)

where Z3 is the renormalization constant of photon factor, and αem = 1
137 is the fine

structure constant. In the simplest case, one picks up the three lightest vector mesons

and then obtains Equation (1.53).
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Bauer, Spital, Yennie, and Pipkin: Hadronic properties of the photon 269

Around the same time, accurate data on the real photon
total cross sections were becoming available and it was
found that the VMD contribution (1.6I accounted for about
80% of the experimental value. The new states are eas-
ily adequate to supply the missing contribution. In fact,
it is clear that the new states must interact with an ap-
preciably srnallex effective cross section than typical
hadronic ones in order to account for real and virtual
photon cross sections. These models, as wet. l as other
speculations about the role of higher-mass constituents,
will be described in Sec. VI.B.

II. GENERAl FEATURES OF HADRONIC
ELECTROD YNAIVI ICS
The purpose of this section is to give the reader a

bird' s-eye view of the whole field. Later sections will
provide detailed descriptions of the data and, in many
cases, a closer examination of the theoretical argu-
ments. It is suggested that the less dedicated reader
may wish to read this section as a more or less self-
contained "mini-paper, " then glance at the figures and
tables in Sections III, IV, and V, and return to a read-
ing of Section VI for a summary and speculations.

A. Analogies between photon- and hadron-induced
processes

S
s (Gy&)

IO 20

FIG. 8. A plot of BeT&&/ImT&& for Compton scattering versus
energy. The solid curve comes from the dispersion relation
analysis of Damasbek and Gilman (1970); the data point comes
from tbe measurement of BeT&& of Alvensleben et al. (1973),
together with the optical-theorem value for ImT&&.

High-energy hadron —hadron elastic scattering shows
al. l the features that one would expect to flow from a
strong interaction and the existence of a myriad of open
channels: a total cross section that varies very slowly
with energy; a forward amplitude that is dominantly
imaginary; and virtually complete opacity at small im-
pact parameters. Photon interactions, on the other
hand, are very weak. There, is no doubt that the low par-
tial waves, corresponding to small impact parameters,

500—

400—

500—

have only very small phase shifts, and that the total
cross sections forphoton-hadron collisions, o», are no-
where near geometrical. At first sight one might there-
fore have expected photon-hadron scattering to bear no
resemblance to that of hadrons by hadrons.
A host of experiments have Ishown that such expecta-

tions were quite wrong. ' The most obvious similarity
of photon and hadron interactions is the behavior of the
total cross sections, which is illustrated in Fig. 7. Both
show spectacular resonances at low energies, and above
3 GeV they level out and become structureless, ap-
parently tending to a constant at high energies. ' The
limiting photon total cross sections on neutrons and pro-
tons are nearly the same, indicating that the photon in-
teraction does not depend primarily on the charge of the
target. The photon total cross sections are smaller than
the hadronic ones by approximately the fine structure
constant in order of magnitude. Except for its very
small magnitude, the nucleon's Compton amplitude'
T&z(s, t) is virtually indistinguishable from, say, the
pion-nucleon amplitude (at least for s» t). For energies

gO0M ~
dh ~

x
0

ao~

1,0
I

1.5
I.

2.0
I

2,5
I i I i I (

B.O 4.0 5.0 Ge Y
W

FIG. 7. A plot versus energy of the total hadronic cross sec-
tion and the total photon cross section. The solid line is a plot
of (ox+& +ox-P/440 using data taken from the compilation of
Hobler and Jakob (1972). For the electromagnetic total cross
sections see the compilation of Damasbek and Gilman (1970)
(0».-e) and Armstrong et al. (1972a, b) {0&&.-o; and o&„.~).
This figure was taken from Genz and Schmidt (1973).

An excellent review of the evidence for the similarity of
photon and hadron interactions is contained in the 1971 and
1973 Erice Lectures of Sakurai (1973, 1975). lennie (1977)
has also given a review at the 1972 Cargese summer school,
with emphasis on diffractive processes.
2&henever we talk of "constant values" at large s, we do not

mean to rule out the possible presence of terms rising logari-
thmically with s. A very recent experiment (Caldwell et al .,
1977) shows that photon cross sections develop this behavior
which was previously well confirmed for hadronic reactions
at CEBN {Amaldi et al ., 1973; Amendolia et al ., 1973) and at
FNAL (Carroll et al ., 1974).
We denote the amplitude for the process aN bN by T,~

throughout. N denotes that the target is a single nucleon. A
detailed glossary of notation is contained in Appendix E.
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Figure 1.3: Total cross-section as a function of energy for interactions of photons and
hadrons [50].

The idea of the Vector Meson Dominance Model can be generalized to the weak

interacting processes, those via exchangingW±. This leads to the Hadron Dominance

Model(HDM) [42]. Unlike the VMD model, which only needs contributions from

vector mesons, in this model, the vector meson (ρ) contributes to the hadronic vector

current and the axial-vector meson (a1) contributes to the hadronic axial current. In

addition, there is a contribution described by PCAC hypothesis. To specify, we have

[50]

σ(νl + α→ l + β) ∝
∑

i=ρ,a1,π

σ(i+ α→ β)

+ interference terms. (1.55)
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Chapter 2

Challenges of Precision Oscillation

Experiments

In the past, there have been many detectors designed for neutrino experiments. Neu-

trino beams are produced at particle accelerators which offer the greatest control over

the neutrino being studied.

Short Baseline Neutrino Experiment:

Experiments at a short baseline (defined as . 1 km) look at neutrino beams with

energy ranging from stopped Muon decay (< 53 MeV) to several hundred GeV.

For example, in the LSND experiment [49], the signal ν̄µ → ν̄e was found [9, 11, 23]

as well as νµ → νe although weaker than the ν̄µ → ν̄e [22, 10]. The MiniBooNE

experiment [19, 14] is also a short baseline neutrino experiment is designed to check

the result of LNSD signal.

Long Baseline Neutrino Experiment:

The Long Baseline Neutrino Experiment (LBNE), now called the Deep Under-

ground Neutrino Experiment (DUNE), was designed for a high sensitivity measure-

ment to many parameters [1]:

(1) First, it is the measurement of νµ → νe and ν̄µ → ν̄e oscillations with νe (ν̄e)

appearance and νµ (ν̄µ) disappearance, including a precision measurement of the third

mixing angle θ13, measurement of the CP violation phase δCP , and determination of

the mass hierarchy (MH) (the sign of ∆m2
13).

The experimental sensitivity, quantified by ∆χ2 parameters, is calculated by com-
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Figure 4.5: The significance with which the mass hierarchy (top) and CP violation (δCP �= 0 or π, bottom)
can be determined by a typical LBNE experiment with a 34-kt far detector as a function of the value of
δCP. The plots on the left are for normal hierarchy and the plots on the right are for inverted hierarchy. The
width of the red band shows the range of sensitivities that can be achieved by LBNE when varying the beam
design and the signal and background uncertainties as described in the text.

the muon flux at the near site as described in [29], the expectation of improved hadron production
measurements with the NA61 and MIPP experiments, and the experience of previous νe appearance
experiments as summarized in Table 4.4.

The Long-Baseline Neutrino Experiment

Figure 2.1: The significance with which the mass hierarchy (top) and CP violation
(δCP 6= 0 or π, bottom) can be determined by the LBNE experiment with 34-kt
far detector as a function of the value of δCP . The plots on the left are for normal
hierarchy and the plots on the right are for inverted hierarchy. The width of the red
band shows the range of the sensitivity that is achieved by LBNE when varying the
beam design and the signal and background uncertainties [1]

.

paring the predicted spectra for various scenarios. As the sensitivity, the definitions

of ∆χ2 for neutrino MH and CP-violation sensitivity are different [1]:

∆χ2
MH = |χ2

MHtest=IH − χ2
MHtest=NH |, (2.1)

The sensitivity of the mass hierarchy is defined in Equation 2.1. Because the os-

cillation experiments can only probe the squared difference of the neutrino masses,

whether or not m2 is heavier than m3 remains unknown. If m2 is lighter than m3,

this scenario is called normal mass hierarchy. If m2 is heavier than m3, this scenario
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is called inverted mass hierarchy. Normal and inverted mass hierarchy are shown in

Figure 2.2.

Figure 2.1 shows the sensitivities for determining the mass hierarchy (MH) and

CP violation as a function of the true value of δCP after six years of running in

the LBNE 34 kt configuration. Let’s consider the sensitivity of neutrino MH first.

The sensitivities of normal hierarchy (NH) and inverted hierarchy (IH) are evaluated

separately and shown at the top of this figure. The X axis in this figure is the phase

factor δ/π. In the left top of this figure shows the sensitivity of normal hierarchy,

There are three curves, the bottom one (solid line) is the result of prediction without

near detector, the middle one is the result of prediction without the high resolution

near detector but with beam improvement [1], the top one is the result of prediction

with near detector and with beam improvement. We could see, with the beam design

and high resolution near detector, the sensitivity is improved. The thicker the band

is, the more the sensitivity improved.

The determination of the mass hierarchy (MH, or ordering) is very important in

physics because neutrinos are fundamental particles, and knowing their properties is

very critical [39]; The mass hierarchy could help people to know the nature of neutri-

nos: are they Majorana or Dirac particles? The question of CP violation could also

be answered through the mass hierarchy, which is a very fundamental parameter of

νSM (SM+3right-handed ν’s), and study mass hierarchy may provide the answers to

why there is more matter than anti-matter and the connections between the neutrinos

and dark matter. Let’s see the relationship between neutrino mass hierarchy and CP

violation. The uncertainty of the CP violation reads [1]

∆χ2
CPV = min(∆χ2

CP (δtestCP = 0),∆χ2
CP (δtestCP = π)), (2.2)

∆χ2
CP = χ2

δtestCP
− χ2

δtesttrue
. (2.3)

Since the true value of δCP is unknown, a scan is performed over all possible values
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Figure 2.2: Normal and inverted mass hierarchy [35].

of δtrueCP . The individual χ2 values are calculated using [1]

χ2(ntrue,ntest, f) = 2
Nreco∑

i

(ntruei ln ntruei

ntesti (f) + ntesti (f)− ntruei ) + f 2, (2.4)

where n are event rate vectors in Nreco bins of reconstructed energy and f represents a

nuisance parameter to be profiled. Nuisance parameters include the values of mixing

angles, mass splittings and signal and background normalization. The nuisance pa-

rameters are constrained by Gaussian priors; in the case of the oscillation parameters,

the Gaussian prior has standard deviation determined by taking 1/6 of the 3σ range

allowed by the global fit [24]. The sensitivity of CP violation in the ELBNF/DUNE

project is shown at the bottom of Figure 2.1, and is similar to the mass hierarchy

sensitivity. The sensitivity to the CP violation is also improved using a high resolu-

tion near detector and with beam improvements. When δ is around -0.5π or 0.5π,
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the sensitivity is increased from 3σ level to 5σ level. The inverted mass hierarchy

scenario gives similar result as the normal mass hierarchy scenario but with higher

sensitivity.
90 4 Neutrino Mixing, Mass Hierarchy, and CP Violation
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Figure 4.2: The expected reconstructed neutrino energy spectrum of νµ or νµ events in a 34-kt LArTPC for
three years of neutrino (left) and antineutrino (right) running with a 1.2-MW beam.

Table 4.3: Expected number of neutrino oscillation signal and background events in the energy range
0.5 GeV to 8.0 GeV at the far detector after detector smearing and event selection. The calculation assumes
sin2(2θ13) = 0.09 and δCP = 0. The event rates are given per 10-kt LArTPC and three years of running
with the improved 80-GeV LBNE beam at 1.2 MW. For signal, the number of ν and ν events are shown
separately, while for the background estimates ν and ν events are combined. The MH has negligible impact
on νµ disappearance signals.

Beam Hierarchy Signal Events Background Events
νx/νx CC νµ NC νµ CC νe Beam ντ CC Total

νµ → νx=µ (disappearance)
Neutrino - 2056/96 23 N/A - 18 41
Antineutrino - 280/655 10 N/A - 10 20

νµ → νx=e (appearance)
Neutrino Normal 229/3 21 25 47 14 107
Neutrino Inverted 101/5 21 25 49 17 112
Antineutrino Normal 15/41 11 11 24 9 55
Antineutrino Inverted 7/75 11 11 24 9 55

appearance modes for neutrinos and antineutrinos, for normal (NH) and inverted (IH) hierarchy.
The rates are given per 10 kt of fiducial LArTPC mass.

The GLoBES implementation used in the sensitivity studies presented here appears to be in good
agreement with more recent results from the Fast MC, described in Section A.3. Updated sensitivity
and systematics studies are currently underway using the Fast MC for detector simulation, and
customized GLoBES-based software for the oscillation fits and propagation of systematics. A full

The Long-Baseline Neutrino Experiment

Figure 2.3: The expected reconstructed neutrino energy spectrum of νµ or ν̄µ events
in a 34-kt LArTPC for three years of neutrino(left) and anti-neutrino(right) running
with a 1.2-MW beam [1].

(2) The ELBNF/DUNE is also designed for the precision measurement of sin2 θ23

and |∆m2
32| in the νµ/ν̄µ disappearance channel. Figure 2.3 and Figure 2.4 show the

predicted spectrum of neutrino and anti-neutrino.

In Figure 2.5, the distributions of MH and CP-violation sensitivities as a function

of exposure are shown. Similar to the Figure 2.1, there are also three set of lines are

shown in these two figures. The top one is the result of 1%5% which is the goal of

the ELBNF/DUNE scientific program, with no systematic; The middle line with the

value 2%5% represents the results with beam improvement, but no near detector; The

bottom line represents the results with no beam improvement and no near detector

existence. From this figure, we can see an obvious improvement in sensitivity with

beam improvements and a near detector. From this figure, it is obvious that the

signal and background normalization uncertainties on the MH sensitivity is small,

even at high exposures, given the large ν/ν̄ asymmetry at 1,300 km compared to CP
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Figure 4.3: The expected reconstructed neutrino energy spectrum of νe or νe oscillation events in a 34-kt
LArTPC for three years of neutrino (left) and antineutrino (right) running with a 1.2-MW, 80-GeV beam
assuming sin2(2θ13) = 0.09. The plots on the top are for normal hierarchy and the plots on the bottom are
for inverted hierarchy.

MC simulation of the far detector and automated event reconstruction is being developed; this is
also described in Appendix A.

The Long-Baseline Neutrino Experiment

Figure 2.4: The expected reconstructed neutrino energy spectrum of νe or ν̄e oscil-
lation events in a 34-kt LArTPC for three years of neutrino (left) and anti-neutrino
(right) running with a 1.2-MW, 80-GeV beam assuming sin2(2(2θ13) = 0.09. The
plots on the top are for normal hierarchy and the plots on the bottom are for in-
verted hierarchy [1].

violation which is even significant at high exposure.

(3) ELBNF/DUNE project is also designed to determine the θ23 octant using

combined precision measurements of the νe/ν̄e appearance and νµ/ν̄µ disappearance

channels.

(4) Another goal of ELBNF/DUNE project is to search for nonstandard physics,

which could manifest itself as a difference in the high-precision measurement of νµ

and ν̄µ oscillations over long baselines.
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Figure 4.10: The mass hierarchy (left) and CP violation (right) sensitivities as a function of exposure in
kt · year, for true normal hierarchy. The band represents the range of signal and background normalization
errors.

Table 4.7: The exposures required to reach 3σ and 5σ sensitivity to CP violation for at least 50% of all
possible values of δCP as a function of systematic uncertainties assumed on the νe appearance signal. The
uncertainties varied are the uncorrelated signal normalization uncertainty (Sig) and the background normal-
ization uncertainty (Bkgd).

Systematic uncertainty CPV Sensitivity Required Exposure

δCP Fraction (
�

∆χ2)
0 (statistical only) 50% δCP 3 σ 100 kt · MW · year

50% δCP 5 σ 400 kt · MW · year
1%/5% (Sig/bkgd) 50% δCP 3 σ 100 kt · MW · year

50% δCP 5 σ 450 kt · MW · year
2%/5% (Sig/bkgd) 50% δCP 3 σ 120 kt · MW · year

50% δCP 5 σ 500 kt · MW · year
5%/10% (no near ν det.) 50% δCP 3 σ 200 kt · MW · year

certainty assumptions range from 1-2%/5% on signal/background to 5%/10%. The uncertainties
listed in Table 4.7 and shown in the sensitivity figures pertain to the νe appearance signal and back-
ground normalization. In Figure 4.9 the sensitivities obtained from the rate only, shape only and
rate+shape of the appearance spectrum are shown for a 10-kt detector with an 80-GeV beam. For
CP violation (right), the rate information dominates the sensitivity, but the shape information en-
ables the detector to exceed 3σ sensitivity for large CP violation. For the MH sensitivity, Figure 4.9
(left) demonstrates that the sensitivity in the least favorable range of δCP values is dominated by the
shape information. Further analysis has shown that it is the region of the second oscillation node

The Long-Baseline Neutrino Experiment

Figure 2.5: The mass hierarchy (left) and CP violation (right) sensitivities as a func-
tion of exposure in kt· year, for true normal hierarchy. The band represents the range
of signal and background normalization errors [1].

The massive high-resolution far detector of ELBNF/DUNE project is a 34 kt liquid

argon time-projection chamber (LArTPC) deep ground locates at Sanford Laboratory

at a 4850 foot depth, 1300 km from Fermilab, and will enable LBNE to significantly

expand the search for proton decay as predicted by Grand Unified Theories, as well as

study the dynamics of core-collapse supernovae through observation of their neutrino

bursts, should any occur in our galaxy during LBNE’s operating lifetime [1].

Besides the far detector, a high resolution near neutrino detector is also proposed

for high precision measurements of the neutrino mass matrix, neutrino interactions,

structure of nucleons/nuclei, and so on. This high resolution detector will be intro-

duced in chapter 3.

Absolute and Relative Flux Measurements

Relative Flux: Any neutrino experiment needs to predict or measure the neutrino

and anti-neutrino flux. In the ELBNF/DUNE project, the primary interest is the

relative flux determination [1].

The relative neutrino flux could be measured through the charged current neutrino
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scattering process (νµ + e− → µ− + νe) with low hadronic-energy deposition (ν)

on the electron. The threshold of this process is Eν > 10.8GeV . Because of the

existence of the neutrino in the final state, the incoming neutrino energy could not

be fully reconstructed. The intranuclear effects tell us that not all the hadrons escape

from the nucleus, which will also affect the measurement of the visible energy of

hadronic system. To minimize the fraction of the total interaction energy carried by

the hadronic system, low ν0 is brought up, where ν0 is a given value of visible hadronic

energy in the interaction. Then the differential cross-section could be expressed with

ν0 [1]:

N (ν < ν0) ' CΦ(Eν)ν0[A+ ( ν0

Eν
)B + ( ν0

Eν
)2C +O( ν0

Eν
)3], (2.5)

where the coefficients are A = F2, B = (F2 ± F3)/2, C = (F2 + F3)/6, and Fi =
∫ 2

0
∫ ν0

0 Fi(x)dxdν is the integral of the structure function Fi(x). The dynamics of

neutrino-nucleon scattering implies that the number of events in a given energy bin

with hadronic energy Ehad < ν0 is proportional to the (anti) neutrino flux in that

energy bin up to corrections O(ν0/Eν) and O(ν0/Eν)0. The number of N (ν < ν0)

is therefore proportional to the flux, up to correction factors of the order O(ν0/Eν)

or smaller, which are not significant for small values of ν0 at energies ≥ ν0. The

coefficients A and B and C are determined for each energy bin and neutrino flavor

within the ND data.

Low Energy Absolute Flux: Neutrino-Electron-NC Scattering

The low energy absolute flux could be determined by the neutral current neutrino

scattering on the electron (νµ + e− → νµ + e−) [40].

σ(νle→ νle) =
G2
µmeEν

2π [1− 4 sin2 θW + 16
3 sin4 θW ], (2.6)

σ(ν̄le→ ν̄le) =
G2
µmeEν

2π [13 −
4
3 sin2 θW + 16

3 sin4 θW ], (2.7)
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From Equation 2.6 and Equation 2.7, we could see the cross-section only depends on

the knowledge of sin2 θW .

High Energy Absolute Flux: Neutrino-Electron CC scattering

The νµ−e− CC interaction (inverse Muon decay(IMD): νµ + e− → µ− + νe) could

be used to determine the high energy absolute flux. Considering the energy thresh-

old for this process, IMD requires Eν ≥ 10.8GeV . The high-resolution ND in the

ELBNF neutrino beam will observe ≥ 2, 000 IMD events within three years. The re-

construction efficiency of the single, energetic forward µ− will be ≥ 98%; the angular

resolution of the IMD µ is ≤ 1 mrad [1]. The background, primarily originated from

the νµ−QE interactions, can be precisely constrained using a control sample [1].

Low Energy Absolute Flux: QE in Water and Heavy-Water Targets

The quasi-elastic charged current (QE-CC) scattering (νµn(p)→ µ−p(n)) on deu-

terium at low Q2 could be used to extract the low energy absolute neutrino flux.

Since (mµ/Mn)2 at Q2 = 0, could be neglected, the cross-section is independent of

neutrino energy for (2EνMn)1/2 > mµ [1]:

dσ

dQ2 |Q
2 = 0| = G2

µcos
2θC

2π [F 2
1 (0) +G2

A(0)] = 2.08× 10−38cm2GeV −2 (2.8)

which is determined by neutron β decay and has a theoretical uncertainty< 1%.

The flux can be extracted experimentally by measuring low Q2 QE interactions (≤

0.05GeV) and extrapolating the result to the limit of Q2 = 0. The measurement

requires a deuterium(or hydrogen for anti-neutrino) target to minimize the smearing

due to Fermi motion and other nuclear effects. This requirement can only be achieved

by using both H2O and D2O targets embedded in the fine-grained tracker and ex-

tracting the events produced in deuterium by statistical subtraction of larger oxygen

component [1].
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Figure 2.6: νµ and ν̄µ flux distribution in ELBNF/DUNE project.
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Figure 2.7: νe and ν̄eflux distribution in ELBNF/DUNE project.

Measurement of ν/ν̄ Flux Ratio

Figure 2.6 and Figure 2.7 show the distribution of neutrino fluxes at the near detector

in predicted ELBNF/DUNE projects. In the ELBNF neutrino beam, there will have

a < 10% contamination of neutrinos of the "wrong sign" in the oscillation energy

region (ν̄’s in the ν beam and vice-versa) from the decay of wrong sign hadrons that

propagate down the center of the focusing horns (where there is no magnetic field)

into the decay volume. A ≤ 1% contamination of νe and ν̄e in the νe appearance

signal region is produced by the decays of tertiary Muons from Pion decays, and

decays of Kaons [1].

The measurement of the neutrino fluxes is very important in the neutrino inter-

24



www.manaraa.com

action analysis for the following reasons:

Similar to the NOMAD Beam, The LBNF fluxes also have two beam modes:

neutrino beam mode and anti-neutrino beam mode. The neutrino beam mode is

dominated by ν, and the anti-neutrino beam mode is dominated by ν̄. However,

there are still a contamination in each beam mode. It is very important to constrain

the contamination of each beam.

Second, measuring these fluxes is important to perform procedure measurement

of cross sections and electroweak measurement, such weak mixing angle.

Third, since the coherent process is leaving the target nucleus largely unaffected,

it is optimum to monitor the neutrino source.

Fourth, Since the ratio of coherent cross section for ν and ν̄ can be calculated

precisely, it is possible to constrain the critical ratio of ν/ν̄ fluxes.

Finally, the neutrino and anti-neutrino induced coherent Pion production have the

same cross-section under PCAC theorem, so we can measure the neutrino vs anti-

neutrino flux precisely which is very important for LBNF/DUNE oscillation measure-

ments.

Determination of ν(ν̄) energy scale

In ELBNF/DUNE, the determination of the oscillation parameters depends on the

knowledge of the neutrino energy. Thus, reconstructing the neutrino energy becomes

very critical in the experiment. It must be reconstructed on an event-by event basis

because the neutrino beams are quite broad in energy due to their production in

a secondary decay of primarily produced hadrons. The determination of neutrino

energy could be measured from the kinematics of the outgoing particles, Since the

coherent process is not as sensitive to nuclear effects as other kind of processes, then

study of coherent processes is very important in determining the neutrino spectrum.
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Chapter 3

Coherent Meson Production by Neutrino

(Theory)

3.1 Kinematics of (Anti)Neutrino Scattering

Before we proceed let’s define some notation used throughout this chapter (see Fig-

ure 3.1). (The derivation in the section was created in collaboration with C. T.

Kullenberg)

E and E’ : The incoming neutrino and outgoing lepton energies.

k and k’ : The four-momenta of the incoming neutrino and outgoing lepton.

p and p’ : The four-momenta of initial and final hadron states.

q : The four-momentum transfer.

ν : The energy transfer.

M : The mass of the target nucleon.

Q2 : The negative of the square of the four-momentum transfer.

The mathematical expressions of ν, q and Q2 are shown in Equation (3.1),

ν = E − E ′

q = k − k′ =
(
E − E ′, ~k − ~k′

)
=
(
ν, ~q

)

Q2 = −q2 = |~q|2 − ν2 (3.1)

Looking more carefully at Q2 we have:

Q2 = 2(EE ′ − ~k · ~k′)−m2
ν −m2

l (3.2)
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W 2: Invariant hadronic mass W 2 = (q + p)2.

If we assume that the lepton masses are negligible (mν ,ml ≈ 0) then ~k · ~k′ =

|~k||~k′| cos θ ≈ EE ′ cos θ and we have:

Q2 ≈ 2EE ′(1− cos θ) (ml → 0) (3.3)

f = µ : k(E′, ~k′)f = ν : k′(E,~k)

q

p : p(M, 0) h : p′

Figure 3.1: Kinematics of neutrino scattering.

3.2 Neutrino Induced Coherent Pion

According to the Feymann Rules, the amplitude of a neutrino induced hadronic inter-

action can be obtained from the weak current at the leptonic and hadronic vertexes:

M = GF√
2
[
Jweaklepton

]α [
Jweakhadron

]
α
, (3.4)

where

GF√
2

= g2

8M2
W

. (3.5)
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The form of the weak current in purely leptonic interactions is known as:
[
Jweaklepton

]
α

= ψ̄lγα(1− γ5)ψν . (3.6)

The exact form of the weak current is known for free quark interactions; however, it

is more complicated in the case of bound quarks in nucleons, which can be written as
[
Jweakhadron

]
α

= Vα − Aα. (3.7)

While Vα transforms like a vector under parity, Aα transforms like an axial vector.

Combining the leptonic current and hadronic current, we have:

M = GF√
2
Lα[Vα − Aα], (3.8)

where

Lα = ψ̄lγ
α(1− γ5)ψν . (3.9)

The scattering amplitude can be written as:

M2 = G2
F

2 L
αLβ∗[Vα + Aα][V ∗β + A∗β], (3.10)

and

Aαβ = [Vα − Aα][V ∗β − A∗β]. (3.11)

Besides the leptonic tensor and the hadronic tensor, in some conditions, the interfer-

ence between the vector and axial vector terms is also considered. However, this term

vanishes in the case of coherent interactions in the limit Q2 → 0. Here the leptonic

tensor is defined as

Lαβ = LαLβ∗

= 8{pαν pβµ + pβνp
α
µ − pν · pµgαβ + iεαβγδpνγpµδ}. (3.12)

Now let’s show some details as follows. Using Equation (3.9), we have

Lαβ = LαLβ∗

= (ψ̄lγα(1− γ5)ψν)(ψ̄lγβ(1− γ5)ψν)†

= ψ̄lγ
α(1− γ5)ψνψ†ν(1− γ5)γβ†ψ̄l

† (3.13)
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Using the anti-communicative relationship and the formula of the sum over the spin

of Dirac field:

{γ5, γµ} = 0. (3.14)

∑

s

ψlψ̄l = 6pl +m. (3.15)

In the present analysis, the neutrino mass can be safely taken to be 0, so we have:

∑

s

ψνψ̄ν = 6pν . (3.16)

The leptonic tensor now becomes

Lαβ = Tr(ψlψ̄lγα(1− γ5)ψνψ̄ν(1 + γ5)γβ)

= Tr((6pµ +m)γα(1− γ5) 6pν(1 + γ5)γβ). (3.17)

The subscripts ν and µ indicate the neutrino and the muon, not the four vector

index.

Lαβ = Tr(ψlψ̄lγα(1− γ5)ψνψ̄ν(1 + γ5)γβ)

= Tr((6pµ +m)γα(1− γ5) 6pν(1 + γ5)γβ)

= Tr((6pµ +m)γα(6pν − γ5 6pν)(1 + γ5)γβ)

= 2Tr((6pµ +m)γα(6pν+ 6pνγ5)γβ). (3.18)

In the last equality, the anti-commutation relation has been used.

Lαβ = 2Tr[ 6pµγα 6pνγβ +mγα 6pνγβ + 6pµγα 6pνγ5γ
β −mγα 6pνγ5γ

β]

= 2Tr[ 6pµγα 6pνγβ + 6pµγα 6pνγ5γ
β]. (3.19)

Using the trace technology:

Tr[ 6pµγα 6pνγβ] = 4pαµpβν − 4pµ · pνgαβ + 4pβµpαν (3.20)

Tr[ 6pµγα 6pνγ5γ
β] = −iεlαmβ(pµ)l(pν)m. (3.21)
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The indices αβγδ are four momentum indices and are summed over. For small

lepton masses (mµ → 0), it can be shown that pν · pµ approaches Q2

2 .

Taking the limit Q2 → 0 then causes the term pν ·pµ to vanish. From the equality

pν · pµ = EνEµ(1− cos θ), again assuming negligible lepton masses, it is obvious that

the limit Q2 → 0 refers to the case where the neutrino and muon direction are parallel.

In this limit the four momenta can be written pν = |Eν/ν|q and pµ = |Eµ/ν|q, and

the lepton tensor becomes:

Lαβ = 16EνEµ
ν2 qαqβ. (3.22)

Using this tensor, the amplitude can be expressed in terms of the derivative of the

hadronic weak currents. As the vector current is conserved (CVC), the derivative of

the vector current ∂αVα vanishes and only the derivative of the axial vector current

remains. Hence the aforementioned conclusion that the axial vector current dominates

at very low Q2.

M2 = 8G2EνEµ
ν2 |∂

αAα|2. (3.23)

In 1960 Goldberger and Treiman used the possibility of almost conserving the

axial vector current (in the limit of massless pions), by introducing a pseudoscalar

current, to predict the rate of pion decay. This result in an expression for the axial

-vector form factor, commonly known as the Goldberger-Treiman relation.

(Mp +Mn)g1(0) =
√

2fπgπN . (3.24)

Here Mp and Mn are the masses of the proton and neutron, fπ is the pion decay

constant, and gπN is the pion-nucleon coupling constant.

This leads to another statement of the PCAC (partially conserved axial current)

hypothesis, first proposed by Gell-Mann and Levy in 1960:

∂αAα = fπM
2
πφπ. (3.25)
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where φπ is the pion field. Now let’s go into some details of the PCAC hypothesis.

First, we have

< 0|Aµ(x)|π(pν) > = < 0| exp(iP̂ · x)Aµ(0) exp(−iP̂ · x)|π(pν) >

< 0|∂µAµ(x)|π(pν) > = ∂µ < 0|Aµ(x)|π(pν) >

= ∂µ < 0| exp(iP̂ · x)Aµ(0) exp(−iP̂ · x)|π(pν) >

= ∂µ < 0|Aµ(0)|π(pν) > exp(−iP · x)

= −iPµ < 0|Aµ(0)|π(pν) > exp(−iP · x). (3.26)

Since < 0|Aµ(0)|π(pν) > is an axial vector function of pµ, it can be written as

< 0|Aµ(0)|π(pν) >= ifπp
µ, (3.27)

where fπ is the pion decay constant. So

< 0|∂µAµ(x)|π(pν) > = pµ · pµfπ exp(−iP · x)

= m2
πfπ < 0|φπ(x)|π(pν) > . (3.28)

This equation shows that PCAC is exact on the pion mass shell, while off the pion

mass shell, it is assumed that the operator equation 3.25 still holds.

With CVC and PCAC, and neglecting the mass of the leading lepton (muon),

now we can deal with the matrix element, which is < B|∂αAα|A >, where A and B

represent initial and final nucleon respectively.

Using Equation (3.25), we have

< B|∂µAµ|A > = < B|fπm2
πφπ|A >

= fπm
2
π < B|φπ|A > . (3.29)

The transition matrix element < B|φπ|A > has a pole at the q2 = m2
π and its residue

is just the amplitude of the scattering < A+π → B >. So it is reasonable to assume

< B|∂µAµ|A > = fπ
m2
π

Q2 +m2
π

< A+ π → B > (3.30)
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at the low energy region 0 . q2 . m2
π. Precisely, there are also other pole con-

tributions from other particles [16], and considering them leads to an extension of

PCAC.

In the limit of Q2 → 0, the result given above leads us to (Note that i∂α ↔ qα)

qαA
αβqβ = qα < Aα >< Aβ >∗ qβ

= fπ < B|A+ π > fπ < B|A+ π >

= f 2
π |M(A+ π → B)|2. (3.31)

Inserting Equation (3.31) into Equation (3.23) gives:

|M|2 = 8G2
F

EνEµ
ν2 f 2

π |M(A+ π → B)|2. (3.32)

Then we have

dσ(ν +A → µ+ B) = 8G2
F

EνEµ
4EνMNν2f

2
π | <M(A+ π → B >)|2

×(2π)4δ4(pν + pZi − pµ − pZf )

× 1
(2π)3

d3pµ
2Eµ

1
(2π)3

d3pZf
2EZf

. (3.33)

The integrating measure is

d3pµ = | ~pµ|2dpµdΩ = |~pµ|2dpµ2πd cos θ. (3.34)

For the massless particle | ~pµ| = Eµ, Q2 = 2EνEµ(1 − cos θ); dEµ = −dν; dQ2 =

−2EνEµd cos θ. So

d3pµ = E2
µdEµ2π 1

−2EνEµ
dQ2

= E2
µ(−dν)2π 1

−2EνEµ
dQ2

= E2
µ2π 1
−2EνEµ

dQ2dν

= πEµ
Eν

dQ2dν. (3.35)
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Now, we can write the scattering amplitude of |M(A+ π → B)|2 into the form of

cross-sections,

dσ(A+ π → B) = |M(A+ π → B)|2
4MNν

×(2π)4δ4(pν + pZi − pµ − pZf )
1

(2π)3
d3pZf
2EZf

. (3.36)

Then the differential cross-section becomes

dσ(ν +A → µ+ B)|Q2→0 = G2
Ff

2
π(1− y)
2π2ν

σ(π +A → B)dQ2dν. (3.37)

This expression is known as Adler’s theorem, it is valid for the limit Q2 → 0; it

relates the weak neutrino nucleus cross-section to that of the strong pion-nucleus

cross-section. In the calculation above, the mass of the lepton muon is neglected. If

the lepton mass is not neglected, the leptonic tensor becomes

Lµν = 8{kµk′ν + kνk
′
µ + k · k′gµν}. (3.38)

Because the hadronic tensor is symmetric, the anti-symmetric tensor term in leptonic

tensor has no contribution.

It is interesting that the cross-section is not dominated by exchanging the pion

meson at Q2 = 0 under PCAC. To show this, let’s write the hadronic current into 2

parts, one of which represents the pionic contribution and the other one represents

nonpionic contribution.

jµ = ifπ
qµ

Q2 +m2
π

M(α + π → β) + j′µ. (3.39)

jν∗ = −ifπ
qν

Q2 +m2
π

M∗(α + π → β) + j′ν∗. (3.40)

The hadronic tensor becomes

W µν = jµjν∗

= j′µj′ν∗ + j′µ × (−ifπ
qν

Q2 +m2
π

M∗) + j′ν∗ × ifπ
qµ

Q2 +m2
π

M

+fπ
qµ

Q2 +m2
π

M× fπ
qν

Q2 +m2
π

M∗. (3.41)
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iqµj
µ = fπ

Q2

Q2 +m2
π

M+ iqµj
′µ. (3.42)

Using the result of PCAC,

iqµj
µ = fπM(α + π → β). (3.43)

iqµj
′µ = fπ

m2
π

Q2 +m2
π

M. (3.44)

Now let’s calculate ∑ j′µM∗. Assume
∑

j′µM∗ = apµ + bqµ, (3.45)

where a and b are constants.

iqµ
∑

j′µM∗ = iqµ(apµ + bqµ)

= iap · q + ibq2. (3.46)

When Q2 ≈ 0,

iqµ
∑

j′µM∗ = iqµ(apµ + bqµ)

= iap · q. (3.47)

Then, we have

a = fπ|M|2
ip · q . (3.48)

Combine with the leptonic tensor, and we get the cross-section:

d2σ(ν + A− > µ+ π +B)
dQ2dν

|Q2→0 = G2f 2
π(1− y)
2π2ν

σ(π +A → B)

×[1− ν

E ′
m2
µ

Q2 +m2
π

+ ν2

4EE ′
m2
µ(Q2 +m2

µ)
(Q2 +m2

π)2 ].

(3.49)

For the coherent process ν̄A → µ+π−B, the only change is the leptonic tensor:

Lαβ = LαLβ∗

= 8{pαν pβµ + pβνp
α
µ − pν · pµgαβ − iεαβγδpνγpµδ}. (3.50)
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However, under the assumption of the small Q2 and leptonic mass ≈ 0, then the

leptonic tensor = 0. Then we come to the conclusion that the cross-section of the

process ν̄A → µ+π−B

dσ(ν̄ + A− > µ+ + π− +B)|Q2→0 = dσ(ν + A− > µ− + π+ +B)|Q2→0. (3.51)

For the neutral current (NC) interaction, we have

fπ0 = fπ±√
2
. (3.52)

dσ(ν +A → ν ′ +A′ + π0) = G2
F

EE ′

4EMν2 2f 2
π |M(A+ π → A′|

×(2π)4δ4(p+ k − p′ − k′)
1

(2π)3
d3p′

2E ′
1

(2π)3
d3k′

2k′0
. (3.53)

dσ(A+ π → A′) = |M(A+ π → A′)|2
4MNν

×(2π)4δ4(pν + pZi − pµ − pZf )
1

(2π)3
d3pZf
2EZf

. (3.54)

dσ(ν +A → ν ′ +A′ + π0) = G2
Ff

2
π

4π3ν
σ(A+ π → A′)d3p′. (3.55)

where d3p′ = πE
′

E
dQ2dν. Making a variable change with

x = Q2

2Mν

y = ν

E
, (3.56)

we have

dQ2dν =

∣∣∣∣∣∣∣∣

∂Q2

∂x
∂Q2

∂y

∂ν
∂x

∂ν
∂y

∣∣∣∣∣∣∣∣
× dxdy

= 2MEνdxdy

= 2ME2ydxdy, (3.57)
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and

d3p′ = π
E ′

E
2ME2ydxdy

= 2MπE ′Eydxdy, (3.58)

so

dσ(ν +A → ν ′ +A′ + π0) = G2
Ff

2
π

4π3ν
dσ(A+ π → A′) (3.59)

2MπE ′Eydxdy

= G2
Ff

2
πME

2π2
E ′y

ν
dσ(A+ π → A′)dxdy

= G2
FME

π2
1
2f

2
π(1− y)[dσ(A+ π → A′)

×dxdy]. (3.60)

In the last equality, we used the formula that y = ν
E
, Then, we have:

[dσ(ν +A → ν ′ +A′ + π0)
dxdydt

]Q2=0 = G2
FME

π2
1
2f

2
π(1− y)

×[dσ(A+ π → A′)
dt

]. (3.61)

which is consistent with the result given by [37].

3.3 Neutrino Induced Coherent ρ

This section deals with high ν (energy transfer) and low Q2 (negative of the square

of the 4-momentum transfer) production of ρ mesons in neutrino interactions. In

the regime of low Q2 the distances probed are larger than in DIS (deep inelastic

scattering). The target nucleon constituents, therefore, cannot be considered as free

particles and the perturbative theoretical approach towards strong interactions cannot

be applied. Here the theory of VMD (Vector Meson Dominance) applied to weak

interactions is used to produce a cross-section for ρ production in the low Q2 regime.

The derivation of this section was created in collaboration with C.T.Kullenberg. We
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will link cross-section of the production of coherent ρ mesons by neutrinos (ν +

A → µ+ ρ+A) to the transverse and longitudinal cross-sections of coherent meson

scattering (ρ+A → ρ+A).

During this calculation we will assume that the target is at rest in the lab frame,

and we will assume that the lepton masses can be ignored.

The square of the scattering amplitude is written as:

|M|2 = G2
F

2 LµνW
µν , (3.62)

where W µν is the hadronic tensor. Experiments are generally blind to particle po-

larization, so one must average over the initial particle spins and sum over all final

particle spin states and momenta. This must be done for both the hadronic and

leptonic tensors. One might re-write the square of the amplitude as:

< |M|2 >= G2
F

2 < Lµν >< W µν >, (3.63)

where the brackets indicate the initial and final state averaging and summing pro-

cess. Often, however, the distinction is implied and one continues to use the form in

Equation (3.62).

The Hadronic Tensor

Using the hadron dominance assumption we will consider only the contribution of

the ρ meson to the hadronic vector current. The calculation of the hadronic tensor

will proceed in the normal fashion, but we will ignore the axial vector contribution

and we will impose qµW µν = 0 due to CVC (Conservation of Vector Current).

The most general symmetric form of the hadronic tensor is [20]

W µν = W1g
µν +W2

pµpν

M2 +W4
qµqν

M2 +W5
pµqν + qµpν

M2 , (3.64)

where the coefficients Wi are functions of ν and q2. We keep only symmetric terms as

asymmetric terms arise from the interference of the vector and axial vector currents.
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So, from CVC we have:

qµW
µν = W1q

ν +W2
q · ppν
M2 +W4

q2qν

M2 +W5
q · pqν + q2pν

M2 = 0, (3.65)

which implies that the factors W4 and W5 can be expressed in terms of W1 and W2.

Looking at functions of pν and qν separately:

W5 = W2
q · p
Q2

W4 = W2
(q · p)2

Q4 +W1
M2

Q2 . (3.66)

The hadronic tensor can be written as:

W µν = W1

(
gµν + qµqν

Q2

)
+ W2

M2

(
pµ + p · q

Q2 q
µ

)(
pν + p · q

Q2 q
ν

)
. (3.67)

The ρ dominance hypothesis is implemented by expressing the hadronic current

as [42]

Jµ = fρ
Q2 +m2

ρ

[
gµν − qµq

ν

m2
ρ

]
Aν(ρ+ α→ β), (3.68)

where fρ is the coupling constant of the ρ meson to theW boson and ε(i)µ Aµ represents

the amplitude of a ρ meson with polarization ε(i). We can write the hadronic tensor

as a product of the Jµ currents.

W µν = JµJν∗

=
(

fρ
Q2 +m2

ρ

)2 ([
gµσ − qµq

σ

m2
ρ

]
Aσ(ρ+ α→ β)

)

×
([
gνω − qνq

ω

m2
ρ

]
Aω(ρ+ α→ β)

)∗
. (3.69)

By conservation of isospin current we have qµAµ = 0, so the q factors disappear

giving us simply:

W µν = C2
ρM

µν , (3.70)

where we have defined:

Mµν = AµAν∗

Cρ =
(

fρ
Q2 +m2

ρ

)
. (3.71)

Mµν must undergo the usual averaging and summing of states.
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Linking W1 and W2 to σT and σL

We have written W µν in terms of the unknown coefficients W1 and W2, and we have

also shown W µν to be proportional to Mµν . We would like to express W µν in terms

of the transverse (σT ) and longitudinal (σL) polarized cross-sections of the incident ρ

meson. We can accomplish this if we use the following definitions from [20] and [50]:

σT = σT (ρ+ α→ β) = 1
|~q|ε

∗T
µ M

µνεTν

σL = σL(ρ+ α→ β) = 1
|~q|ε

∗L
µ M

µνεLν . (3.72)

It should be noted here that these definitions do not include integration over final

momenta, which must be done eventually. We will also need the explicit form of the

polarization vectors given here [20].

εT = ∓ 1√
2




0

1

±i

0




εL = 1√
Q2




|~q|

0

0

ν




. (3.73)

Massive vector bosons have three possible polarization vectors (two transverse

and one longitudinal). In our calculations we will make use of ε∗µεµ, which has the

same value for both transverse polarizations. It, therefore, doesn’t matter which one

we choose when we use εT .

Now from Equation (3.70) we see that Mµν = 1
C2
ρ
W µν , and looking at Equa-

tion (3.67) we can write it very simply:

Mµν = 1
C2
ρ

[W1F1 +W2F2] , (3.74)

where, for economy of space, we have made functions F1 and F2 :

F1 =
(
gµν + qµqν

Q2

)

F2 = 1
M2

(
pµ + p · q

Q2 q
µ

)(
pν + p · q

Q2 q
ν

)
. (3.75)

39



www.manaraa.com

Now putting our new form of Mµν into σT and σL:

σT = 1
C2
ρ |~q|

ε∗Tµ (W1F1 +W2F2)εTν

σL = 1
C2
ρ |~q|

ε∗Lµ (W1F1 +W2F2)εLν . (3.76)

Or we might make a few simple definitions to clean it up a bit:

σT = 1
C2
ρ |~q|

(W1AT +W2BT )

σL = 1
C2
ρ |~q|

(W1AL +W2BL). (3.77)

At this point one need only calculate AT , BT , AL and BL, which are just contractions

of the polarization vectors with the functions F1 and F2, in order to express W1 and

W2 in terms of σT and σL.

By noting that qνεν = 0 (due to gauge invariance), p =
(
M, 0, 0, 0

)
because

the target is at rest and using the explicit form of the polarization vectors in Equa-

tion (3.73) it is easily shown that:

AT = ε∗Tµ F1ε
T
ν = −1

BT = ε∗Tµ F2ε
T
ν = 0

AL = ε∗Lµ F1ε
L
ν = 1

BL = ε∗Lµ F2ε
L
ν = |~q|2

Q2 . (3.78)

Putting these back into Equation (3.77) and solving for W1 and W2 gives us the

relationships that we’ve been looking for.

W1 = −C2
ρ |~q|σT

W2 =
C2
ρQ

2

|~q| (σT + σL) . (3.79)

We can put this form of W1 and W2 into our expression for the hadronic tensor W µν
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in Equation Equation (3.67).

W µν =
(

fρ
Q2 +m2

ρ

)2

− |~q|σT

(
gµν + qµqν

Q2

)

+ Q2(σT + σL)
|~q|M2

(
pµ + p · q

Q2 q
µ

)(
pν + p · q

Q2 q
ν

)
. (3.80)

Calculating |M|2

Now that we have the Hadronic and Leptonic tensors in a useable form we can put

them into the equation for the square of the scattering amplitude Equation (3.62).

To simplify a bit we will rewrite Equation (3.80) using the definitions we made in

Equation (3.71) and Equation (3.75).

W µν = |~q|f 2
ρ

[
−σTF1 + Q2

|~q|2 (σT + σL)F2

]
. (3.81)

Putting this into |M|2 :

|M|2 = 4|~q|G2
FC

2
ρ

[
− σT (T1 + T2 − T3)

+ Q2

|~q|2 (σT + σL)(T4 + T5 − T6)
]
. (3.82)

Were we need to calculate the six Ti terms:

T1 =
(
k′µkνF1

)
T2 =

(
kµk

′
νF1

)
T3 =

(
k · k′gµνF1

)

T4 =
(
k′µkνF2

)
T5 =

(
kµk

′
νF2

)
T6 =

(
k · k′gµνF2

)

(3.83)

To do this we will use:

k · k′ ≈ Q2

2 (ml → 0) (3.84)

which will give us the following for the first three terms:

T1 + T2 − T3 =
(

2(k · q)(k′ · q)
Q2 − k · k′

)
≈ −Q2. (3.85)
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For the second set of three terms we will simplify with the following relations that

are valid when the target is at rest:

p2 = M2 p · q = Mν

p · k = ME p · k′ = ME ′. (3.86)

This will give us:

(T4 + T5 − T6) = 1
2
(
4EE ′ −Q2

)
. (3.87)

Putting Equation (3.85) and Equation (3.87) into Equation (3.82) we can write

the square of the scattering amplitude.

|M|2 = 4G2
F |~q|f 2

ρ

Q2

(Q2 +m2
ρ)2

[
σT + (σT + σL)

2|~q|2
(
4EE ′ −Q2

)]
. (3.88)

Calculating the Cross-Section

The differential cross-section is given by [41].

dσ = |M|2
2EA2EBUAB


∏

f

d3pf
(2π)3

1
2Ef


 (2π)4δ4(pA + pB −Σpf ), (3.89)

where A and B are the initial particles, pf s are final state particle four-momenta,

and UAB is the relative velocity between A and B in the laboratory frame, which in

this case is unity because the neutrino effectively moves at the speed of light and the

target is at rest.

Here we are considering two final state "particles", the outgoing lepton and the

final hadronic state. So the differential cross-section can be written as:

dσ = |M|2
2E2M

(
d3k′

(2π)3
1

2E ′

)(
d3p′

(2π)3
1

2p′0

)
(2π)4δ4(k + p− k′ − p′). (3.90)

Integrating Over p′ for σT and σL

At this point we need to expose some slightly ambiguous notation that we have been

using for the ρ transverse and longitudinal cross-sections. We will deal here with σT ,

but these arguments apply equally well to σL .
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We have so far defined the transverse cross-section as:

σ0
T = 1
|~q|ε

∗T
µ M

µνεTν = 1
|~q| |ε

T
µA

µ|2

We can think of this as the amplitude squared for the process (ρ + α → β),

normalized by the inverse of the ρ momentum. For now we have renamed the original

definition as σ0
T . To transform it into an actual cross-section we must integrate over

the final momenta.

We can use Equation (3.89) with the amplitude we have and note that the velocity

of the ρ in the lab frame is |~q|
ν
(in general p = γmv = Ev ⇒ v = p

E
), and because the

target is at rest we have:

UAB = |~q|
ν
. (3.91)

So we can write the true cross-section σT as:

σT =
∫ |εTµAµ|2

2ν2M( |~q|
ν

)

(
d3p′

(2π)3
1

2p′0

)
(2π)4 δ4(q + p− p′)

=
∫ |εTµAµ|2

2|~q|2M

(
d3p′

2p′0

)
(2π) δ(ν +M − p′0) δ3(~q + ~p− ~p′)

=
( |εTµAµ|2
|~q|

)
π

2p′02M δ(ν +M − p′0)

=
(

π

4Mp′0
δ(ν +M − p′0)

)
σ0
T . (3.92)

We can see that if we multiply the original definition of σ0
T by the factor ( π

4Mp′0
δ(ν+

m− p′0)) then we obtain the full cross-section σT , which has been integrated over the

final momenta. This is identically true for the longitudinal ρ cross-section σL. And

because |M|2 is linearly proportional to σ0
T and σ0

L we might modify |M|2 itself by this

same factor, absorbing it and simply stating that we have performed the momentum

integration for σT and σL . So we can write:

|M|2
(

π

4Mp′0
δ(ν +M − p′0)

)
Integrate σT and−−−−−−−−−−−→

σL over p′
|M|2. (3.93)

If we are presented with this factor then we will absorb it into |M|2 and make

reference to this rule.
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Integrating Over p′ for dσ

We will now return, after our digression, to Equation Equation (3.90). We must

integrate over the final momenta.

dσ =
∫

p′

|M|2
2E2M

(
d3k′

(2π)3
1

2E ′

)(
d3p′

(2π)3
1

2p′0

)
(2π)4 δ4(k + p− k′ − p′)

= |M|2
2E2M

(
d3k′

(2π)3
1

2E ′

)(
1

(2π)3
1

2p′0

)
(2π)4 δ(E +M − E ′ − p′0)

= |M|2
(

π

4Mp′0
δ(ν +M − p′0)

)(
d3k′

(2π)3
1

2EE ′

)
. (3.94)

Here we will invoke our rule Equation (3.93) and absorb the middle term into

|M|2 giving us:

dσ = |M|2
(
d3k′

(2π)3
1

2EE ′

)
. (3.95)

dσ in Terms of dQ2 and dν

We would now like to express dσ in terms of dQ2 and dν rather than d3k′. Let’s

first look at dQ2. When ignoring the lepton masses we have from Equation (3.3)

Q2 ≈ 2EE ′(1− cos θ). For it’s derivative we have:

dQ2 =
(
∂Q2

∂θ

)
dθ +

(
∂Q2

∂E ′

)
dE ′ +

(
∂Q2

∂E

)
dE. (3.96)

We will not integrate over the initial momentum (or energy for m = 0), therefore

dE → 0 leaving us with:

dQ2 =
(
∂Q2

∂θ

)
dθ +

(
∂Q2

∂E ′

)
dE ′. (3.97)

Now for dν we simply have dν = d(E−E ′) = dE−dE ′ → dν = −dE ′. The minus

sign seems troublesome, but it is a simple matter of changing the integration limits.
∫ E

0
dE ′ = −

∫ 0

E
dν =

∫ E

0
dν. (3.98)

When the outgoing lepton has zero energy, the full energy E has been transferred

to the hadronic system. We will absorb the minus sign into dν and integrate from
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zero momentum transfer to full energy transfer (which one might normally expect).

So dE ′ → dν, and if we multiply dQ2 by this we have:

dQ2dν =
(
∂Q2

∂θ

)
dθdE ′ +

(
∂Q2

∂E ′

)
(dE ′)2. (3.99)

We will not integrate twice over the final momenta, so (dE ′)2 → 0 and we finally

have:

dQ2dν =
(
∂Q2

∂θ

)
dθdE ′

= (2EE ′ sin θ) dθdE ′. (3.100)

For d3k′ we have:

d3k′ = |~k′|2d|~k′|dΩ ≈ E ′2dE ′dΩ

= 2πE ′2dE ′ sin θdθ. (3.101)

Putting the above two equations together we can relate d3k′ to dQ2dν.

d3k′ = π
E ′

E
dQ2dν. (3.102)

After inserting this into Equation (3.95) we have a new form for our cross-section.

dσ = |M|2
(
dQ2dν

16π2E2

)
. (3.103)

Final Cross-Section

Simply inserting our |M|2 from Equation (3.88) into Equation (3.103) gives us the

following:

d2σ(να→ µβ)
dQ2dν

= G2
F |~q|

4π2E2f
2
ρ

Q2

(Q2 +m2
ρ)2

×
[
σT + (σT + σL)

2|~q|2
(
4EE ′ −Q2

)]
. (3.104)

We are basically done here, but one might also make a couple of definitions to

write this in another way.

ε = 4EE ′ −Q2

4EE ′ +Q2 + 2ν2 . (3.105)
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R = dσL/dt

dσT/dt
. (3.106)

Then we can modify the term in brackets and write the cross-section in its final

form.

d3σ(νµA → µ−ρ+A)
dQ2dνdt

= G2
F

4π2 f
2
ρ

|~q|
E2

(
Q

Q2 +m2
ρ

)2 (1 + εR

1− ε
)

×
[
dσT (ρ+A → ρ+A)

dt

]
. (3.107)

For the anti-neutrino process ν̄A → µ+ρ−A we have the same coupling constant

between the ρ− and the W boson.

f+
ρ = f−ρ . (3.108)

For the anti-particle process the leptonic tensor is different only in the sign of the

anti-symmetric term [50].

< Lµν >ν̄ = 8
(
kµk′ν + kνk′µ − k · k′gµν − iεµνσλkλk′σ

)
. (3.109)

Because the leptonic tensor contracts with the hadronic tensor, and the hadronic

tensor is symmetric, the anti-symmetric term must vanish. Therefore the leptonic

tensor is the same, the hadronic tensor is unchanged, and we might then conclude

that the cross-sections of the neutrino and anti-neutrino processes are equal.

σ(ν̄A → µ+ρ−A) = σ(νA → µ−ρ+A). (3.110)

3.4 Cross-section of Coherent ρ0

In section 10.6 of Griffiths’ book [34] one can find information regarding the neutral

weak interactions. I will list some basic information from that resource here.

− igW
2
√

2
γµ
(
1− γ5

)
W± vertex

−igZ2 γµ
(
Cf
V − Cf

Aγ
5
)

Z0 vertex, (3.111)
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Table 3.1: Table of vector and axial vector couplings.

f CV CA

νe, νµ, ντ 1
2

1
2

e−, µ−, τ− −1
2 + 2 sin θW −1

2
u, c, t 1

2 − 4
3 sin2 θW

1
2

d, s, b −1
2 + 2

3 sin2 θW −1
2

where, in the GWS model, all parameters are determined by the weak mixing angle

θW , which must itself be measured from experiment as we currently have no method

to calculate it. A reasonable measure for the angle is θW = 28.7o, or sin2 θW = 0.23.

gW and gZ are related to the electromagnetic coupling constant ge.

gW = ge
sin θW

gZ = ge
sin θW cos θW

. (3.112)

The GWS vector and axial vector couplings can be gotten from Table 10.1 in [34],

shown here in Table 3.1.

Additionally, the W and Z masses are related in a simple way.

MW = MZ cos θW . (3.113)

For the charged current amplitude, we have:

MW = < ρ+|ū
[
−i g√

2
γµ

1
2
(
1− γ5

)
Vud

]
d̄|0 > −1

M2
W

ūµ

[
−i g√

2
γα

1
2
(
1− γ5

)]
uνµ ×

×A(ρ+A → ρ+A)

= Vud
g2

8M2
W

< ρ+|ūγαd̄|0 > ūµγα(1− γ5)uνµA

= GF√
2
VudMρ+fρ+εαρ+ūµγα(1− γ5)uνµA. (3.114)
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While for the neutral current we have (because ρ0 = 1√
2(uū− dd̄) ):

MZ = 1√
2





ig

cos θW
< ρ0|ūγα

[1
4 −

2
3 sin2 θW −

1
4γ

5
]
u|0 > +

+ ig

cos θW
< ρ0|d̄γα

[
−1

4 + 1
3 sin2 θW + 1

4γ
5
]
d|0 >



×

× 1
M2

Z

ūνµ

[ −ig
cos θW

γα

(1
4 −

1
4γ

5
)]
uνµA(ρ0A → ρ0A)

= 1√
2




−ig

cos θW

(1
4 −

2
3 sin2 θW

)
< ρ0|ūγαu|0 > +

+ ig

cos θW

(
−1

4 + 1
3 sin2 θW

)
< ρ0|d̄γαd|0 >



 ×

× −1
M2

Z

ūνµ

[ −ig
cos θW

γα
(1

4 −
1
4γ

5
)]
uνµA

= 1√
2
−ig

cos θW

(1
2 − sin2 θW

)
Mρ0fρ0εαρ0

−1
M2

Z

( −ig
cos θW

1
4

)
ūνµγ

α(1− γ5)uνµA

= g2

8
√

2M2
Z cos2 θW

(
1− 2 sin2 θW

)
Mρ0fρ0εαρ0ūνµγ

α(1− γ5)uνµA

= g2

8
√

2M2
W

(
1− 2 sin2 θW

)
Mρ0fρ0εαρ0ūνµγ

α(1− γ5)uνµA

= GF

2
(
1− 2 sin2 θW

)
Mρ0fρ0εαρ0ūνµγ

α(1− γ5)uνµA, (3.115)

where fρ0 ≈ fρ+ , Vud = 1, isospin conservation gives Mρ0 = Mρ+ and we use the high

energy approximation Mµ = Mν = 0.

So we can see that for coherent ρ0:

M(νµA → νµρ
0A) = 1√

2
(1− 2 sin2 θW )M(νµA → µ−ρ+A), (3.116)

and the coherent ρ0 cross-section can be written as

d3σ(νµA → νµρ
0A)

dQ2dνdt
= 1

2(1− 2 sin2 θW )2d
3σ(νµA → µ−ρ+A)

dQ2dνdt
. (3.117)
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Chapter 4

The Neutrino Oscillation Magnetic Detector

(NOMAD) experiment

4.1 The NOMAD Neutrino Beam

The NOMAD experiment is designed to search for νµ → ντ and νµ → νe oscillations

in a predominantly νµ beam at CERN. Figure 4.1 shows the predicted distributions

of neutrino and anti-neutrino flux. The neutrino beam in NOMAD, with a 25 GeV

average energy, was produced from the in-flight decays of the secondary mesons, such

as π±, K±, K0. The mesons originated from the 450 GeV protons from the Super

Proton Synchrotron (SPS) incident on a beryllium target (made of 11 rods 10 cm

long and 2 mm in diameter each separated by 9 cm gaps). The secondary pions and

kaons were focused by a pair of coaxial magnetic lenses: a horn and a reflector (shown

in Figure 4.2). In this system, charged particles were deflected by the toroidal field

between two coaxial conductors carrying equal and opposite currents so that the

focusing of particles of one sign implied defocusing particles of the opposite sign.

Collimators reduced the anti-neutrinos contamination by intercepting the defocused

secondaries. The mesons were allowed to decay within a 290 m long evacuated decay

pipe. Shielding made from iron and earth followed which was used to range out muons

and absorb hadrons. The average neutrino flight path to the NOMAD detector was

628 m, the detector being 836 m downstream of the Be-target.

The Monte Carlo simulation predicted the relative abundance of neutrino species:

νµ : ν̄µ : νe : ν̄e = 1.00 : 0.061 : 0.0094 : 0.0024. with average energies of 23.5, 19.2,
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37.1, and 31.3 GeV [48].
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Figure 4.1: Predicted neutrino(νµ) and anti-neutrino (ν̄µ)flux in NOMAD.

4.2 The NOMAD Detector
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Figure 4.2: Schematic layout of the West Area Neutrino Facility(WANF) beam
line [8].

The NOMAD detector was designed to measure and identify most of the particles,

including charged and neutral particles, produced in the interaction of neutrino and

target [5], which was composed of several sub-detectors. A top view of the NOMAD
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detector is shown in Figure 4.3. In this Figure, the fiducial volume of the NO-

MAD detector consists of 44 drift chambers and with a low average density (around

0.1 g cm−3). The drift chambers are located within a dipole magnet providing a 0.4 T

magnetic field orthogonal to the neutrino beam line. The existence of magnetic field

allows for the determination of the momenta of charged tracks via their curvature

with minimal degradation due to multiple scattering. The direction of the magnetic

field is chosen as the X reference axis. The incoming neutrinos’ direction is called

Z axis. Y axis is orthogonal to both of them. On average, the equivalent material

in the DC encountered by particles produced in a ν-interaction was about half of a

radiation length and a quarter of a hadronic interaction length (λ). The fiducial mass

of the NOMAD DC-target, 2.7 tons, was composed primarily of carbon (64%), oxy-

gen (22%), nitrogen (6%), and hydrogen (5%) yielding an effective atomic number,

A=12.8, similar to carbon. There were nine modules of transition radiation detectors

(TRD) located downstream of the target which are used to separate electrons from

pions. Since Pions are about 270 times heavier than electrons, the chance of emitting

a transition radiation X-ray is much smaller than electrons. With this TRD, about

99.9% of pions are rejected and 90% electrons are kept. The TRD was followed by an

electromagnetic calorimeter (ECAL) including a preshower, a hadronic calorimeter

and a muon chamber providing a clean identification of the muons. The energy reso-

lution of this ECAL in NOMAD is σ(E)
E

= (1.04±0.01)%+ 3.22±0.07
% E(GeV). With the

muon chamber, about 92% of the muons with momenta above 6 GeV can be recon-

structed. In the NOMAD detector, the charged tracks could be reconstructed in the

DC with an approximate momentum (p) resolution of δp/p 3.5%. The experiment

recorded over 1.7 million neutrino interactions in the active drift-chamber (DC) target

in the range O(1) ≤ Eν ≤ 300 GeV. Besides the drift chamber, the Front Calorimeter

(FCAL) was installed to provide additional massive active target for neutrino inter-

actions. This FCAL consisted of 23 iron plates and 4.9 cm thick and separated by
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Figure 4.3: Diagram of the NOMAD detector (top view) [5]

1.8 cm gaps. Twenty out of the 22 gaps were instrumented with long scintillators

read out on both ends. The depth of FCAL is about 5 nuclear interaction length [48].

The total mass of FCAL in NOMAD is about 17.7 tons. This large mass provides

high statistics. There are two main topics are studied with this FCAL: One is the

production of opposite sign muon pairs ("dimuons"); The other one is the search for

the heavy neutrinos ("sterile neutrinos").

4.3 Reconstruction and Simulation

In the NOMAD experiment, The drift chamber can be used to determine the event

topology and to measure the momenta of charged particles. when the neutrinos

interact with the target in the drift chamber, the trajectories of charged particles

are reconstructed from the coordinate measurements provided by the drift chamber.

In order to provide good measurement of the tracks, a very high efficiency of the
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track reconstruction is required. Also the measured track parameters do not devi-

ate significantly from the true particle momenta, i.e. the reconstruction program

should provide good momentum resolution. The amount of ghost tracks should be

minimized. Since in the drift chamber, the amount of matter crossed by a particle

between two measurement planes cannot be neglected, the effects of energy losses and

multiple scattering must be carefully taken into account [7].

To reconstruct the tracks, first, the pattern recognition (track search) should be

performed to decide which individual measurements provided by the detector should

be associated together to form an object representing a particle trajectory. Second,

a fitting procedure should be applied to this set of measurements in order to extract

the parameters describing the trajectory out of which the physical quantities can be

computed [7].

To find the particle tracks, first, it is needed to guess possible tracks from hit

combinatories and provide initial track parameters. Second, it is attempting to build

a track from the given parameters by repeatedly collecting hits, fitting and rejecting

possible outliers. The track is claimed to be fitted when no more hits can be added

to it [7].

To simulate the Monte Carlo events in NOMAD, Neglib which was built based on

LEPTO 6.1 [29] and JETSET [47] is used as the event generator. Rein-Sehgal (RS)

model [44], Berger-Sehgal(BS) model [15] are used for the coherent event simulation.

4.4 Neutrino Interaction Candidate in NOMAD Target

Figure 4.4 shows the νµ charged current interaction candidate in NOMAD Drift

Chamber, we see that there are many hadron tracks, enabling the momentum vector

measurements. µ is kinematically separated from the hadron vector.

Figure 4.5 to Figure 4.7 show some other neutrino interactions candidates in

NOMAD detector.
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A High-Resolution Fine Grained Tracker as a ND for LBNE(F)

A νµ CC candidate in NOMAD
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Figure 4.4: νµ-CC candidates in NOMAD.A High-Resolution Fine Grained Tracker as a ND for LBNE(F)
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Figure 4.5: ν̄e-CC candidates in NOMAD.

4.5 Coherent Signature in NOMAD Target

Some candidate coherent interaction events are shown from Figure 4.8 to Figure 4.10.

In the charged current coherent process, there are two tracks which are identified as

the leading lepton and coherent meson. A coherent ρ0 candidate event is shown in

Figure 4.8. There is a single, forward ρ0 produced with no accompanying particles

in a neutral charged coherent ρ0 event. The ρ0 in the final state will promptly decay

into a charged pion pair. Therefore, in the NOMAD detector, there will be two tracks

detected.
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Figure 4.6: QE candidates in NOMAD.
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Figure 4.7: Resonance candidates in NOMAD.
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Figure 4.8: Coherent ρ0 candidate event picture.

Figure 4.9: Coherent π+ candidate event picture.
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Figure 4.10: Coherent π− candidate event picture.
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Chapter 5

A High Resolution Fine Grained Tracker (FGT)

as the Near Detector for ELBNF/DUNE

5.1 Introduction & Salient Physics Goals

In the ELBNF/DUNE project, besides the far detector, a near detector known as

HIRESMNU, is also proposed with high resolution within a dipole magnetic field.

This near detector is based on the NOMAD detector concept but with some improve-

ments. It combines large statistics with high resolution (for example, momentum and

energy) in the reconstruction of neutrino events compared with previous experiments.

HIRESMNU is expected to achieve high precision in the measurements of neutrino

interactions, structure of nucleons/nuclei, and the elements of the neutrino mass ma-

trix. It is also designed to search for new physics, such as, sterile neutrinos, high

∆m2 oscillations, light dark matter etc. Hopefully, with HIRESMNU, there will be

some unexpected discoveries made by the far detector. The fiducial mass of this near

detector is 7 tonnes, bigger than the 2.7 tonnes of the NOMAD detector. Different

from the NOMAD detector, there is a 4π ECAL coverage in the dipole magnetic field

and a 4π µ detector coverage instead of only downstream.

A summary of performance for the fine grained tracker configuration is shown in

Table 5.1. All the parameters of the HIRESMNU are not fixed yet, but they have to

meet our goals with the design [1].

Constraining the systematic uncertainties in the oscillation studies: The

precision of the near detector (ND) measurements will be essential for the neutrino

58



www.manaraa.com

Table 5.1: Summary of performance for the fine grained tracker configuration [1].

Performance Metric Value
Vertex resolution 0.1 mm
Angular resolution 2 mrad
Ee resolution 5%
Eµ resolution 5%
νµ/ν̄µ ID Yes
νe/ν̄e ID Yes
NCπ0/CCe rejection 0.1%
NCγ/CCe rejection 0.2%
NCµ/CCe rejection 0.01 %

oscillation studies (νOSCL) in ELBNF/DUNE, so the associated systematic error

should be less than the corresponding statistical error. The required systematic pre-

cision in the near detector will determine the detector parameters such as resolution,

fiducial mass, and so on. To this end, we will pay particular attention to [18]:

(1): Measurement of the relative abundance and energy spectrum of all four

species of neutrinos in the LBNE beam: νµ, ν̄µ, νe and ν̄e via the in situ identification

of their CC-interactions.

(2): Determination of the absolute ν-flux using the ν-electron scattering.

(3) Identification and precise measurement of π0, photon, electron and positron

yields in ν-induced neutral-current (NC) and charge-current (CC) interactions - the

most important background to the νe -appearance.

(4) Measurement of NC cross-section relative to CC as a function of the hadronic

energy, Ehad, since NC processes constitute the largest background to the ν-CC

identification.

(5) Measurement of the π± content in CC and NC hadronic jets since the π± → µ±

are the principal background to the νµ(ν̄µ)-CC.

(6) Measurement of the differential cross-section for various exclusive, semi-exclusive

and inclusive channels relevant for the νOSCL studies, such as quasi-elastic (QE), res-
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onance (Res) and deep-inelastic (DIS) interactions.

(7) Quantification of nuclear-target material cross-section that might affect the

ν-nucleus interactions when extrapolating the near detector measurements to the far

detector.

Precision neutrino physics: The HIRESMNU in ELBNF/DUNE is designed

with a generational advance in the precision measurement of physics parameters, such

as the precise measurement of isospin physics, sum-rules, QCD tests, baryon-spin,

strange meson and baryon production, charm mesons and electroweak constants. As

a case study, we propose to investigate the feasibility of a measurement of the weak-

mixing angle, sin2 θW in the ν(ν̄)-q (DIS) channel at a momentum transfer (Q) in

the neighborhood of 4 GeV with a precision approaching 0.2%. The sought precision

on sin2 θW in this experiment will be comparable to that attained by the collider

experiments. The HIRESMNU ND will also permit searches for new physics with

unprecedented sensitivity; the searches include high- ∆m2 oscillations in νµ → νe,

νµ → ντ , ν̄µ → ν̄e and νe → ντ channels, rare resonance, heavy neutrinos, and exotic

boson [18].

These considerations imply the following requirements:

• Magnetized tracker to identify positive from negative particles throughout the

curvature of the particle tracks(B∼0.4T).

• Low density medium to track charged particles (ρ ∼0.1g cm−3).

• Large statistics (∼ 108 neutrino interactions).

5.2 Sub Detectors

The HIRESMNU offers a generational advance in the identification of particles and

the precise measurement of their momenta. The most precise neutrino detector to
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date is NOMAD whose energy range was 2.5 ≤ Eν ≤ 300 GeV; the energy range of

interest in ELBNF/DUNE is 0.5 ≤ Eν ≤ 100 GeV.

Figure 5.1 shows the sketch of the proposed HIRESMNU detector. In this figure,

the incident neutrino beam comes from the left side. In Figure 5.1, we see that,
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Figure 3–1: Sketch of the proposed HIRESMNU detector showing the inner STT and the 4π
ECAL in the dipole magnet with the muon-ID detector (MRD). The internal magnetic volume is
approximately 4.5m × 4.5m × 8m. Also shown is one module of the proposed STT.
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Figure 5.1: Sketch of the proposed HIRESMNU detector showing the inner STT and
the 4π ECAL in the dipole magnet with the muon-ID detector(MRD). The internal
magnetic volume is approximately 4.5m×4.5m×8m. Also shown is one module of the
proposed STT [18]

different from NOMAD with an ECAL (Electomagnetic Calorimeter) at the down-

stream end, and with a muon-ID detector outside the magnetic field, in HIRESMNU,

the near detector (ND) has a 4π ECAL coverage including downstream (DS), sides

(Barrel) and upstream (US) ends of the detector. The tracking volume will be fully

surrounded by electromagnetic calorimetry. Relative to the NOMAD detector, the

HIRESMNU near detector has an enhanced tracking detector, that is composed of

straw tubes with 1 cm in diameter. Vertical (Y) and horizontal (X) straws will be al-
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ternated and arranged in modules with each module containing a double straw layer.

The HIRESMNU ND also has an improved muon identification capability. Compared

to the 85% efficiency of muon detection in NOMAD, HIRESMNU will tag 98% of the

muons in the νµ charged current sample. The trigger in HIRESMNU will have neither

geometry bias nor charge bias as NOMAD does. HIRESMNU will accumulate about

60 million neutrino interactions in 5 years, a factor of 30 more events than NOMAD

had.

Straw Tube Tracker (STT)

The Straw Tube Tracker (STT) is the particle tracker of HIRESMNU, and locates

at the center of the detector. The design of the straw tube follows that of the

COMPASS detector [38, 43] similar to the dimensions of HIRESMNU, which is also

a low density tracking detector, ρ ≤ 0.1 g cm−3. The conceptual transition radiation

measurement in ν-interactions is based upon NOMAD-TRD [12]; the design of the

transition radiation (TR) detection follows that of the ATLAS Transition Radiation

Tracker [4, 3, 2]. The Straw Tube Tracker (STT) will have a total 160 modules.

Vertical (Y) and horizontal (X) planes of straws will be alternated and arranged in

modules. Each module will consist of a double straw layer (either XX or YY) [18].

Figure 5.2 shows the layout of the straw layers and cross-section of an STT module.

Some parameters for the fine grained tracker are listed in Table 5.2.

Nuclear targets will be installed in the upstream end of the particle tracker (STT).

Figure 5.3 shows the sketch of a basis STT module for the measurement of nuclear

effects. This nuclear target provides a statistical robust sample (×5 the far detector

statistics) to quantitate the differences in ν-nuclear interaction. Argon gas, same as

in the far detector, is proposed to use in pressurized tubes at the upstream end of

the STT [18].

Figure 5.4 shows the schematic of the ATLAS transition radiation tracker (TRT).
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Table 5.2: Parameters for the fine-grained tracker [1].

Performance Metric Value
STT detector volume 3×3×7.04 m3

STT detector mass 8 tons
Number of straws in STT 123,904
Inner magnetic volume 4.5×4.5×8.0m3

Targets 1.27-cm thick argon ∼50 kg,
water and others

Transition radiation radiators 2.4 cm thick
ECAL X0 10 barrel, 10 backward,

18 forward
Number of scintillator bars in ECAL 32,320
Dipole magnet 2.4-MW power,

60-cm steel thickness
Magnetic field and uniformity 0.4 T;

<2% variation over inner volume
MuID configuration 32 RPC planes interspersed

between 20-cm thick layers of steel4–46 Chapter 4: The Detector Design

Figure 4–1: Layout of the straw layers and cross section of an STT Module.
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Figure 5.2: Layout of the straw layers and cross-section of an STT Module [18].

The endplug for the STT will be similar to the ATLAS-TRT, which could enable the

transition radiation measurement with a mixture of Xenon (70%) and CO2 (30%) To

protect STT against humidity, CO2 will be flushed through the straws at a forced-

flow rate of ∼100 m3 h−1.
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Figure 5.3: Sketch of a basis STT module for the measurement of nuclear effects.
Several modules can be placed in the upstream magnetic volume with different target
materials(Pb,Fe etc.) of the same thickness in radiation length [18].

Electromagnetic Calorimeter (ECAL)

The tracking volume of HIRESMNU (STT) will be surrounded by a 4π ECAL cov-

erage: the forward or downstream (DS) module, the four side (top-bottom and left-

right) of the Barrel module, and the upstream (US) module. This ECAl is a lead-

scintillator calorimeter based upon the T2K-ECAL and have transverse and longitu-
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Figure 5.4: Schematic of the ATLAS STT Endplug [18].

dinal segmentation. The ECAL-surrounded STT will be embedded inside the dipole

magnet [18].

The most important component of the ECAL in HIRESMNU near detector is the

forward, or downstream (DS), module (shown in Figure 5.5) composed of 58 layers

of 10-mm-thick (along z-direction) scintillator (Sci) followed by 1.75-mm-thick lead,

corresponding to 10 radiation lengths (X0). The first layer will be composed of 160

horizontal scintillator bars (providing the Y-coordinate of particles), 400-cm long,

2.5-cm wide, and 1-cm thick; followed by the Pb sheet. The 2.5-cm width of the

bar is informed by the Moliere-radius of a 2.5 GeV electron–typical of νe–induced

CC- which is approximately 2cm. The second layer will be composed of 160 vertical

scintillator bars (providing the X-coordinate), 400-cm long, 2.5-cm wide, and 1-cm

thick; followed by the Pb sheet. The third layer will be a Y-plane of bars, vertically

shifted by 1.25 cm; followed by Pb sheet; The fourth layer will be a X-plane of bars,

horizontally shifted by 1.25 cm; followed by Pb sheet. This arrangement will repeat

itself to complete the DS-ECAL module [18].

Figure 5.5 shows a preliminary schematic of the DS-ECAL containing a total of
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9280 Sci-bars with a total Sci-volume of 4.64 m3. Figure 5.6 shows the engineering

details of the module.4–50 Chapter 4: The Detector Design
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Figure 5.5: Preliminary Schematic of the DownStream or Forward ECAL [18].

At a national lab or fabrication center in India the scintillator bars will be extruded

with Kuraray wavelength-shifting fibers and later threaded through the middle of the

bars. The fibers will be read out at each end by silicon photomultiplier (SiPM) type

photosensors. The two readings allow for a position determination. It follows that

the number of readout channels will be twice the number of scintillator bars. In

the DS-ECAL, there will be 18,560 SiPMs. The T2K-ECAL used the Hamamatsu

photosensors called MPPC which will be adequate for our use. It must be noted that

the SiPM technology has undergone a rapid improvement, driving the costs lower and

offering better performance.

Since the Barrel-ECAL will surround the sides of the STT, nominally there would

be four modules, covering a 8m × 4m area, corresponding to the top, bottom, left

66



www.manaraa.com

4–50 Chapter 4: The Detector Design

DETAIL  B
SCALE 1 / 2

1

1

2

2

3

3

4

4

A A

B B

SHEET 1  OF 1 

DRAWN

CHECKED

QA

MFG

APPROVED

Boissevain 9/30/2010

DWG NO

emcal forward assy

TITLE

SIZE

B
SCALE

REV

B

157.48
[4000.0]

157.48
[4000.0]

HiResMnu Forward Calorimeter

.07
[1.8]

typ .33
[8.5]

typ20.04
[509.1]

Estimated Weight:  19,148 Kg (21 US tons)

Figure 4–5: Preliminary Schematic of the DownStream or Forward ECAL.

!"#$%&'()*+,-).+/"01.(++
234*+5+234*+
67+.)8('%+"9+:3;6+**+&<=>?+@AB+
:C+**+D>=$E..)&"'+

6CC+**+

Figure 4–6: DownStream (DS) or Forward ECAL

LBNE-India
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and right sides. The conceptual design of the Barrel-ECAL is similar to that of the

DS-ECAL. A Barrel-ECAL module, Figure 5.7 , will have eight layers of alternating

horizontal and vertical scintillator strips every 7 mm of lead, or 10-X0 deep. The

upstream (US) ECAL will be identical to one of the Barrel-ECAL modules (see

Figure 5.8). For the scintillator bars, our default assumption is that the dimensions

of the bars in the Barrel-ECAL and US-ECAL will remain similar to those in the

DS-ECAL, i.e., 400-cm long, 2.5-cm wide, and 1-cm thick. The total number of bars

in the eight modules of Barrel-ECAL and the one module of US-ECAL will be 11,520

(4-layers × 400cm/2.5cm × 9) correspond ing to 30,000 readout channels.

We have given some thought to reducing the number of channels in the ECAL. Our

preliminary optimization studies include (a) reducing the longitudinal granularity in

the most important portion, the DS-ECAL; (b) reducing its transverse granularity;

and (c) reducing the transverse granularity of the Barrel-ECAL. A detailed GEANT4-
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based MC will provide us with better guidance.

Chapter 4: The Detector Design 4–51
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Figure 5.7: Specifications of the Barrel ECAL [18].
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Figure 5.8: UpStream(UP) ECAL [18].
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Table 5.3: Parameters of the UA1/NOMAD dipole magnet [18].

Item Value
Dimension 3.5× 3.5 × 7 m3

Maximum B-Field 0.7 T
Maximum Current 10,000 A
Resistance(40C) 0.0576
Voltage 576 V
Mass 900 T
Cooling water flow 50 liters/sec
Pressure gredient 15 atm(in .vs. out)
Temperature Diff 30C

Dipole Magnet

In HIRESMNU near detector, the STT particle tracking detector and ECAL modules

will both locate inside a 0.4-T dipole magnet with inner dimensions of 4.5-m wide

by 4.5-m high by 8.0-m long. The proposed dipole magnet is a larger version of the

UA1 dipole magnet [5] which is used by NOMAD, and is currently in use by the near

detector of T2K. Because the dipole magnet for HIRESMNU is very similar to the

UA1 magnet yoke assembly, Figure 5.9 shows a photograph of the specifications of

the UA1 magnet during the NOMAD operation. Table 5.3 summarizes the salient pa-

rameters of this magnet at the maximum operating B field of 0.7 T. The HIRESMNU

magnet will operate at 0.4 T.

The principal differences between the UA1/NOMAD and the HIRESMNU mag-

nets are: (a) size; (b) coil-UA1 used Al-coil to minimize the degredation of the

energy resolution of the outgoing jets with resistivity ρAl = 2.8 × 10−8Ωm; and (c):

HIRESMNU magnet does not need a hole in the coil to allow passage of the pro-

ton beam, as was the case with the UA1 magnet. The HIRESMNU dipole will be

composed of 8+8 ’C’-Sections, the iron yokes. The coil will be made of copper, with

aluminium as another option. Figure 5.10 shows a conceptual engineering drawing of

the proposed magnet and ’C’ Section.
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Total coil weight 31 Tons Not Needed 

Figure 4–11: Coil and coil-assembly of the UA1/NOMAD dipole magnet.

Figure 4–12: Specs of the UA1/NOMAD dipole magnet.

LBNE-India

Figure 5.9: Specs of the UA1/NOMAD dipole magnetic [18].

Resistive Plate Chamber as the Muon Detector (RPC)

In the HIRESMNU design, the muon-ID detector will identify muon tracks which

will then be matched with tracks in the STT with measured momenta and charges.

Thus, the muon-ID detector is not required to furnish muon momentum, only the

µ-ID. However, given the large rate of muons in the ND location, we need a muon-ID

detector with such spatial and time resolutions as to precisely reconstruct µ-track

segments and permit an unambiguous match with the muon track in the STT. The

muon-ID detector can be divided into two systems [18]:
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Figure 4–13: Conceptual sketch of one of the C-sections that constitute the magnet return yoke
(dimensions are in mm). The vertical dimension is longer than the horizontal one in order to
accommodate the magnet coil.

LBNE-India

Figure 5.10: Conceptual sketch of one of the C-sections that constitute the mag-
net return yoke (dimensions are in mm). The vertical dimension is longer that the
horizontal one in order to accommodate the magnet coil [18].

• The Muon Range Detector (MRD) instruments the gaps between the plates

of the magnet return yoke. The main task of the MRD is to identify muons

at low momenta exiting the sides of the detector. The MRD will reconstruct

track segments within the magnet return yoke, including those of the stopping

(ranging-out) muons [18].

• The External Muon Identifier (EMI) will identify high-energy forward muons. It

is located outside the magnet, at the downstream end of the detector. The EMI

will consist of two stations separated by a passive concrete/iron absorber. At

each station, outside and downstream of the dipole magnet, it will reconstruct

muon track segments to be matched with the STT tracks.
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Due to the multiple scattering in the material (mainly iron) crossed by the muon

tracks reaching both the MRD and the EMI detector, a space resolution in the range of

'0.75 mm will be adequate to accomplish the tracking task of the muon-ID detectors.

For both the MRD and EMI detectors, we have selected the same Resistive Plate

Chamber (RPC) technology as that developed for the LHC experiments, OPERA,

BaBar and Argo. (An alternative under consideration is glass-based RPCs.) In

particular, we follow the design of the RPC detectors used in the OPERA experiment

to instrument the gaps within the magnet of the Muon Spectrometer. This type of

application is similar to our MRD and has been operational for a few years in OPERA.

A sketch of the detector is shown in Figure 5.11. Two electrodes, made of 2 mm

Bakelite with linseed oil and volume resistivity ρ > 5×1011Ωcm at T=20 ◦C, are kept

2 mm apart by means of polycarbonate spacers in a 10 cm lattice configuration. The

external surface of the electrodes is painted with graphite of high surface resistivity

and protected with a 190 µm thick PET layer that is applied during the installation

on each side of the RPC to prevent high voltage discharge. The inner surface of the

electrodes is coated with a few-micron-thick polymerized linseed oil layer. The total

thickness of an RPC is between 6 and 7 mm [18].
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Figure 4–14: Cross section of a Resistive Plate Chamber with its associated strips for the readout
of the induced signal.

voltages on the two electrodes. In the HV system we will use distributors measuring operating
currents with nA precision. As temperature is a relevant parameter for RPC operation, ten
thermistors will be placed on each RPC layer between the external side of the read-out strips
and the filling material.

The design of the RPC detectors is based upon the extant models that have been success-
fully operated in the LHC experiments, and in the OPERA and Daya-Bay experiments for
several years. Extensive aging tests were performed under high-rate conditions for the LHC
experiments. The average RPC efficiency measured during the quality control tests for the
OPERA experiment was 98%, with a non-uniformity over the RPC surface smaller than 2%.

The size of each RPC detector will be 3m × 1m, which is very similar to those used in
the OPERA and LHC experiments. Figure 4–13 shows a sketch of one of the C elements
of the magnet return yoke. Each of the five gaps between consecutive steel plates will be
instrumented with a plane of RPC detectors. In addition, one RPC plane will be located
on the external surface of the magnet. Overall, the MRD will consist of a total of six RPC
planes. The thickness of each steel plate is 10 cm, with gaps 4-cm thick. The total area to
be instrumented by RPC detectors within the MRD will be about 1,065 m2, corresponding
to 355 RPC modules.

In order to guarantee a good acceptance for forward muons, the EMI must have a large
transverse area. Currently an ambitious 10m × 10m EMI is assumed; realistically the
dimensions will be closer to 7m×7m; the precise dimensions of the EMI will be determined
after further simulations. We will instrument the EMI with two separate MRD stations, each

LBNE-India

Figure 5.11: Cross-section of a Resistive Plate Chamber with its associated strips for
the read out of the induced signal [18].

72



www.manaraa.com

3–28 Chapter 3: An Overview of the High Resolution Near Detector for LBNE

3
5

0
 c

m

7
0

0
 c

m

EM CALO

EM CALO
E

M
 C

A
L

O

MAGNET + MRD

S
H

IE
L

D
 +

 M
R

D

C
O

N
C

R
E

T
E

 A
B

S
O

R
B

E
R

M
U

O
N

 S
Y

S
T

E
M

 (R
P

C
s)

STT

750 cm

50 cm

5
0

 c
m

5
0

 c
m

500 cm

MAGNET + MRD

Figure 3–2: Layout of the HIRESMNU with downstream, external muon-ID detector (EMI) and
shielding. The EMI specifications are preliminary; detailed simulation studies of EMI will yield a
more robust design.
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Figure 5.12: Layout of the HIRESMNU with downstream, external muon-ID detec-
tor(EMI) and shielding. The EMI specifications are preliminary; detailed simulation
studies of EMI will yield a more robust design [18].

A High-Resolution Fine Grained Tracker as a ND for LBNE(F)

FGT Performance
Radiator (Target) Mass 7 tons
Other Nuclear Target Mass 1–2 tons
Vertex Resolution 0.1 mm
Angular Resolution 2 mrad

Ee Resolution
6%/

√
E

( 4% at 3 GeV)
Eµ Resolution 3.5%
νµ/ν̄µ ID Yes
νe/ν̄e ID Yes

π− .vs. π+ ID Yes

π+ .vs. proton .vs. K+ Yes

NCπ0/CCe Rejection 0.1%
NCγ/CCe Rejection 0.2%
CCµ/CCe Rejection 0.01%
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Figure 5.13: Momentum and Energy resolution of HIRESMNU [18].

5.3 How the FGT Helps Accomplish the Above Goals

The FGT offers a generational advance in the precision of the individual particle

momentum measurements and identification. The most precise neutrino detector to
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date is NOMAD whose energy range is 2.5 ≤ Eν ≤ 300 GeV; the energy range of

interest in LBNE is 0.5 ≤ Eν ≤ 100GeV. The advancements of the FGT compared

with current precision measurement are:

• An Enhanced Tracking Detector.

• 4π Electromagnetic Calorimeter Coverage.

• Improved Muon-Identification.

• No Geometry Bias or Charge Bias Trigger.

• High Event Rate.
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Chapter 6

Coherent π− Measurement in NOMAD

6.1 Signal Signature

ν̄µ
µ+

π+

N N

Figure 2: Feymann diagram of coherent process of νµ and nucleon scattering.

3

!

Wednesday, April 15, 2015Figure 6.1: Feynman Diagram of Coherent Pion Production.

Figure 6.1 shows the Feynman diagram of coherent π− process (ν̄µ +N → µ+ +

π−+N ). In the coherent π− events, there are only two charged particles in the final

state, which means in the drift chamber of NOMAD detector, we are looking for the

events with the following properties:

• There are only two tracks observed. The one which is longer and triggered the

Muon chamber at downstream is identified as Muon.

• The events are all with a low value ofQ2 which is defined in Equation (3.1)(Q2 ≤

1GeV 2).
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• In the selected signal events, the direction of the outgoing lepton is collinear

with the incoming neutrino direction.

6.2 Background

The background of coherent π− events comes from several sources:

• The biggest background comes from νµ charged current events. In some of the

νµ charged current events, π− are also produced, and could be identified as

coherent π− events especially when other particles (except π− and µ+) have

very small energy.

• Another background comes from coherent ρ0 events: The decay of the ρ0 pro-

duces π+ and π−, which might also be classified as coherent Pion events.

• Neutral current events are also a background source in coherent π− analysis

when there are only two tracks observed and one of them is classified as Muon.

6.3 Neutrino and Anti-neutrino Beams

In the NOMAD experiment, the neutrino beam is produced by extracting part of

the 450 GeV proton beam circulating in the SPS (Super Proton Synchrotron) and

allowing it to interact with a beryllium target. Figure 4.2 show the schematic layout

of the the WANF beam line[8]. The two toroidal magnetic lenses, referred to as

the horn and the reflector, focused charged particles of a given sign (positive for a

predominantly νµ beam); The polarity of these magnetic elements could be changed

within minutes in order to produce an anti-neutrino beam (ν̄µ beam) [8], which are

called neutrino beam mode (positive focusing data: FocP) and anti-neutrino beam

mode (negative focusing data: FocN).

The principle of the focusing is illustrated in Figure 6.2. The reflector provided

additional focusing for high momentum particles by horn. The magnetic field was
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provided by current sheets flowing in the inner and outer conductors of the lenses.

The field was measured to be azimuthally symmetric to better than 1.5%. Its value

at a radial position r from the beam axis and for a current I is given by [8]

B = µ0I

2πr (6.1)

The current (100 kA for the horn and 120 kA for the reflector) was provided by the

discharge of capacitor banks and lasted 6.8 ms. The thickness of the inner conductor

was minimized to reduce secondary interactions while maintaining adequate strength

to withstand the magnetic forces.

2.3 The collimators

The target was immediately followed by a copper collimator 1.20 m long with
an 85 mm cylindrical bore, followed by an aluminium collimator, 2.75 m long
starting 3.55 m from the centre of the target. The aluminium collimator defined
an average angular acceptance of 10 mrad for secondaries produced at the
target. Both collimators were water cooled.

2.4 The magnetic horn and reflector

Two toroidal magnetic lenses, referred to as the horn and the reflector, fo-
cused charged particles of a given sign (positive for a predominantly νµ beam)
produced at the target into a near parallel beam while defocusing the particles
of the opposite charge. The principle of the focusing is illustrated in Fig. 2.
The reflector provided additional focusing for high momentum particles and
compensated for overfocusing of low momentum particles by the horn. The
magnetic field was provided by current sheets flowing in the inner and outer
conductors of the lenses. The field was measured to be azimuthally symmetric
to better than 1.5%. Its value at a radial position r from the beam axis and
for a current I is given by

B = µ◦I/2πr. (1)

The current (100 kA for the horn and 120 kA for the reflector) was provided by
the discharge of capacitor banks and lasted 6.8 ms. The thickness of the inner
conductors was minimized to reduce secondary interactions while maintaining
adequate strength to withstand the magnetic forces. Both elements were made
of aluminium alloys of various tensile strengths.

Target

Horn

Reflector

100 GeV/c
 20 GeV/c
 50 GeV/c

Fig. 2. Principle of the focusing. The lines are representative trajectories of particles
of three different momenta.

6

Figure 6.2: Principle of the focusing. The lines are representative trajectories of
particles of three different momenta [8].

Positively charged particles (mainly π+ and K+ mesons) produced around zero

degrees with respect to the primary proton beam are focused into a near parallel

beam by a system of magnetic lenses and subsequently decay producing neutrinos.

The effect of the horn and the reflector on particles of different sign is illustrated in

Figures 6.3 and 6.4, which show angular distributions of positive and negative pions

at a plane just upstream of the horn and immediately downstream of it. Upstream

of the horn, pions of both positive and negative charges emerging from the target

have very similar angular distributions, with the bulk of the particles within 10

mrad, which is the acceptance of the collimators. While traversing the horn, positive

pions with both momentum around 50 GeV/c are focused into a near-parallel beam

leading to an overall enhancement at small angles of up to a factor of 30 (Figure 6.3).
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Fig. 7. Distribution of the angle between the π+ momentum vector and the beam
line direction, pT /p, just upstream of the horn (top left), right after it (top right)
and the ratio of the latter to the former (bottom).

deviations from the expected behavior. The magnetic field in the inner con-
ductors of the horn and reflector was also taken into account, with the current
skin depth calculated using the Fourier transform of the horn pulses. The
radial dependence of the magnetic field in the horn is shown in Fig. 6. The
maximum value of the field (1.85 T for the horn and 0.24 T for the reflector)
occurs at the downstream extremities of both focusing elements, at the outer
surface of the inner conductor.

Transport of the particles in the magnetic field was performed with the Runge-
Kutta method; special care was taken in optimizing the appropriate GEANT
tracking medium parameters.

The effect of the horn and of the reflector on particles of different signs is
illustrated in Figs. 7 and 8, which show angular distributions of positive and
negative pions at a plane just upstream of the horn and immediately down-
stream of it. Upstream of the horn, pions of both charges emerging from the

18

Figure 6.3: Distribution of the angle between the π+ momentum vector and the beam
line direction, PT/P , just upstream of the horn (top left),right after it(top right) and
the ratio of the latter to the former(bottom) [8].

Negative pions are strongly defocused resulting in their reduction at small angles by

as much as a factor of 5 (Figure 6.4). The reflector provides an additional focusing

for positive particles of momentum both higher and power than 50 GeV/c that were

respectively underfocused and overfocused by horn [8].

6.4 Neutrino Beam Mode

In the NOMAD data, all of the incoming neutrinos originating from the neutrino

beam mode are dominated by the Muon neutrinos νµ, but still with a about 3%

percentage contamination of the anti-neutrinos ν̄µ. At first, we are going to measure

78



www.manaraa.com

0

1000

2000

3000

4000

5000

x 10 2

0 0.005 0.01 0.015

PT / P (rad), upstream of the horn

Ev
en

ts 
/ 0

.2
5 

m
ra

d 
/ 3

 1
09  p

.o
.t.

0

1000

2000

3000

4000

5000

x 10 2

0 0.005 0.01 0.015

PT / P (rad), downstream of the horn

Ev
en

ts 
/ 0

.2
5 

m
ra

d 
/ 3

 1
09  p

.o
.t.

1

10

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

PT / P (rad)

Ra
tio

Fig. 8. Distribution of the angle between the π− momentum vector and the beam
line direction, pT /p, just upstream of the horn (top left), right after it (top right)
and the ratio of the latter to the former (bottom).

target have very similar angular distributions, with the bulk of the particles
within ∼10 mrad, which is the acceptance of the collimators. While travers-
ing the horn, positive pions with momentum around 50 GeV/c are focused
into a near-parallel beam leading to an overall enhancement at small angles of
up to a factor of 30 (Fig. 7). Negative pions are strongly defocused resulting
in their reduction at small angles by as much as a factor of 5 (Fig. 8). The
reflector provides an additional focusing for positive particles of momentum
both higher and lower than 50 GeV/c that were respectively underfocused and
overfocused by the horn.

Fig. 9 shows again angular distributions of π+ and π− upstream and down-
stream of the horn but now only those π+ that ultimately produce a νµ reach-
ing the NOMAD detector (and π− that give a ν̄µ) are included. From the
left-hand plots it can be seen that only mesons produced with angles smaller
than ∼ 10 mrad can produce neutrinos that traverse the NOMAD detector.
The distribution of π+ upstream of the horn has two distinct regions: the first,

19

Figure 6.4: Distribution of the angle between the π− momentum vector and the beam
line direction, PT/P , just upstream of the horn (top left),right after it(top right) and
the ratio of the latter to the former(bottom) [8].

the coherent π− events in the neutrino beam mode.

Normalization of Events Samples

In the analysis, to ensure the Monte Carlo matches well with the NOMAD experimen-

tal data, all the Monte Carlo components are initially normalized based on coherent

events and inclusive charged current events.

The initial normalization factors in the analysis are shown in Table 6.1 and Ta-

ble 6.2. Where 1,436,000 is the number of the νµ inclusive charged current events

from the reference [52]. The ratio between neutral current and charged current νµ
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Table 6.1: Normalization of Neutrino Beam Mode events [52, 8].

Mode Event Number
νµ CC 1,436,000
νµ NC 1,436,000 × 0.37
ν̄µ CC 1,436,000 × 0.025
ν̄µ NC 1,436,000 × 0.025 × 0.37

Table 6.2: Ratios between interaction mode.

Ratio Value
NC/CC 0.37

non-DIS/DIS 0.055
QE/RES 0.75

events also comes from this work, but not published yet. These initial normalization

factors should provide us with a reasonable description of the data. Later we will

fine-tune certain normalization factors to improve the fit.

Preselection of ν̄µ CC and Coh π Events

To select the ν̄µ charged current process, some variables cuts were applied during this

analysis, including:

• Fermi Momentum Cut: Pfermi Cut(<1.0 GeV): Fermi Momentum(Pfermi) cut

is applied to all the Monte Carlo events and helps us remove the non-physical

events.

• W2s Cut: Invariant hadronic mass (W2s: W 2 = (q+P )2>1.96 GeV 2), which is

only applied to deep inelastic charged current and neutral current events, which

will remove most of the background from deep inelastic interactions.

• Fiducial Volume: The drift chamber (DC) target is 3×3×4m3 and perpendicular

to the neutrino beam direction. A reduced volume is necessary because some

interactions in the magnet can create vertexes close to or outer the edges of
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the drift chamber active area. In my research, the fiducial volume chosen is

|X|<130 cm, |Y-5|<130 cm, and Z<405 cm with minimum z varying depending

on experiment setup.

Table 6.3: Minimum value for the fiducial volume in NOMAD.

run No. ≤8375 [8376,9344] [9345,14164] ≥14165
min z (cm) 265 115 5 35

• Muon Identification: Since this analysis is searching for coherent π− (ν̄µ +

N → µ+ + π− +N ), Muon identification (µ+) becomes very critical. The first

identification is a loose identification of Phase II which means that a track in

drift chamber can be matched to a hit in the Muon chamber within 40 cm in

the first station or within 50 cm in the second condition. This identification is

stored in the DSTs (Data Summary Type). Then, the selection of Muon can

be tightened by considering the goodness of fit between the track and the hit

in the Muon chamber, and accepting only those combinations with the total χ2

less than 20, over the four degrees of freedom of the fit.

• Tube/Veto Cut: Tube/Veto cut is applied to remove the charged particles and

only let the neutral particles pass through the drift chamber. Then, the events

originating mainly from the Muon contaminants can be rejected.

• Track Number Cut (ncand): In the ν̄µ charged current interactions, there are

two or more than two charged tracks observed. In coherent π− interactions,

there are only two charged tracks observed, including Muon and Pion.

• Muon Momentum (~Pµ) Cut: To ensure the quality of the momentum’s mea-

surement, the Muon momentum should be greater than 1.5 GeV.

• Charge Identification: In a coherent π− event, the hadron is π−. To select the

events with a negative hadron, Charge Identification is applied.
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Figure 5: Diagram illustrating various kinematic measureables in the proposed detector.

5.1 The Traditional Neutrino Physics

The proposed experiment will measure the relative abundance, the energy spectrum, and the

detailed topologies for νµ/νµ/νe/νe induced interactions including the momentum vectors of

negative, positive, and neutral (π0 and K0
s /Λ/Λ) particles composing the hadronic jet. (We are

exploring the possibility of measuring the neutron yield using charge-exchange process.) The

experiment will provide topologies, on an event-by-event basis, of various interactions that will

serve as ‘generators’ for the LBLν experiments. A glance at νµ CC and ν̄e CC event candidates

in NOMAD, shown in Figure 6 and Figure 7, gives an idea of the precision with which the

10

Out of plane

Reconstruction of kinematics

The reconstruction of the detailed event kinematics from individual tracks 

and neutral clusters is a powerful tool to identify specific event topologies
Figure 3–6: Reconstruction of the event kinematics from individual tracks and neutral clusters
in the ECAL is a powerful tool to discriminate NC from CC events.

3.6 Expected Detector Resolutions

We expect that the space-point resolution of the STT will be 200µ on individual hits with
a time resolution of about 1 nanosecond. The test-beam measurements of both the ATLAS-
TRT and COMPASS-STT have achieved better than 170µ resolution. The resolution of the
coordinates of a νµ-CC event, ∆(X,Y, Z), is expected beO(100µ), a value commensurate
with the space-point precision of the NOMAD experience. Figure 3–7 shows the superb
longitudinal (z-position of the ν-vertex) radiography of NOMAD, revealing the elements of
the tracker such as the Kevlar skin, the Honeycomb and the Gas-gap within the tracking
drift-chambers. The STT will afford vertex resolution at least a factor of two better than
that achieved in Figure 3–7.

The energy resolution of the proposed ECAL will be ≈ 6%/
√
E and a time resolution of

1 ns for e/γ with energy ≥ 100MeV . The MRD, composed of RPCs, will have a space-
point resolution of about 200µ and a time resolution of a few nanoseconds. The MRD in the
magnet will permit muon identification down to 300 MeV. The momentum resolution of a
νµ(ν̄µ)-CC induced µ− (µ+) is shown in Figure 5–1 for a 2-m-long track. It should be noted
that the average length of a µ− (µ+) from a CC is about 3.5 m. The energy resolution of
a νe(νe)-CC induced e− (e+) is also shown in Figure 5–1 where the electronic charge and
direction are measured in the STT and the energy in the ECAL.

LBNE-India

Figure 6.5: Reconstruction of the event kinematics for individual events.

• Angle Cut: To select the coherent π− events, 2 angle cuts have been applied.

The angle θ which is the angle between the outgoing lepton µ and the meson

π, should be less than 177.5◦ and greater than 0.5 Rad.

• Missing Transverse Momentum (Pm
T ) Cut: Figure 6.5 shows the reconstruction

of the event kinematics for individual event. To choose the coherent events, the

transverse momentum of the lepton must be less that 0.5 GeV.

• Neutral Vertex and Cluster Cut: neutral vertex and cluster cut are used to cut

off the the coherent ρ0 background especially when the two neutral vertex or

cluster are both from the primary vertex.

|t| = [(Eµ − pzµ) + (Eπ − pzπ)]2 + [(pxµ + pxπ) + (pyµ + pyπ)]2 (6.2)

|tmin| = [(Q2 +m2
π)/2Eπ]2 (6.3)
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t′ = |t− tmin| (6.4)

In the analysis, besides the variables mentioned in the preselection section, there

are three other variable are also used and very important in the analysis of coherent

processes, they are |t|, |tmin|, and |t′| which are defined in Equation (6.2), Equa-

tion (6.3) and Equation (6.4). Where |t| represents the magnitude of the square of

nucleus’ 4-momentum transferred to the nucleus.

Table 6.4: Cut table of Monte Carlo events in generated level.

NCC
ν̄ NCC

ν NNC TotBkg NMC

Total 47790.3 1645469 628612.1 2274081 2321871
Pfermi<1.0 47380.6 1631201 623116.4 2254318 2301698
W2s>1.96(CCDIS) 40610.1 1555351 589725.7 2145077 2185687
|GenX, (GenY-5)|<130 cm 36076.4 1436828 544853.6 1981682 2017758Zmin < GenZ < 405 cm
2.5<Evis<300 35900.0 1436001 544603.7 1980605 2016505

Table 6.4 shows the preselection of ν̄µ charged current events in generated level.

The normalization factor to the total inclusive ν̄µ charged current events is 0.025 ×

1.436× 106 after normalization, Z-weight, and flux(beam) reweight. NCC
ν̄µ represents

the number of ν̄µ charged current events including ν̄µ charged current deep inelastic

events(ν̄µ CCDIS), ν̄µ charged current quasi-elastic events(ν̄µ CCQE), and ν̄µ charged

current resonance events(ν̄µ CCRES). NCC
νµ represents the number of νµ charged cur-

rent events including νµ charged current deep inelastic events(νµ CCDIS), νµ charged

current quasi-elastic events(νµ CCQE), and ν̄µ charged current resonance events(νµ

CCRES). NNC represents the number of ν̄µ neutral current events and νµ neutral

current events. It is obvious that, after all the normalization, the total νµ charged

current events has been normalized to 1,436,000; and the total ν̄µ charged current

events has been normalized to 35,900, which is equal to 1,436,000 × 0.025.
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Table 6.5: Reconstructed variable cut table after normalization and reweighted.

NCC
ν̄ NCC

ν NNC TotBkg NMC Ndata Ndata/NMC

Total 38919.5 1434877 464599.6 1899476 1938396 4018980 2.073
Pfermi<1.0 38595.7 1422826 460710.6 1883537 1922133 4018980 2.091
W2s>1.96(CCDIS) 33404.4 1357502 459376.8 1816879 1850283 4018980 2.169
FV cut 27615.3 1202210 405951.5 1608162 1635777 2515946 1.538
PhaseII 25478.2 1065825 14718.7 1080544 1106022 1151014 1.041
Nmu=1 25361.4 1058265 12319.5 1070584 1095946 1138941 1.039
veto/tube 25234.0 1055009 12263.2 1067273 1092507 1109323 1.015
ncand>=2 23411.5 1029563 12179.9 1041743 1065155 1079287 1.013
|~pµ|>2.5 23277.8 1023853 11742.4 1035595 1058873 1072094 1.012
µ+ 23172.5 8257.5 6011.7 14269.3 37441.7 52834 1.411
DeltaP/P<=0.2 23096.9 7311.7 5819.0 13130.7 36227.7 50085 1.383
thetamupi<177.5 23094.4 7311.7 5818.4 13130.1 36224.5 47549 1.313
Evis<300GeV 23093.2 7309.9 5817.5 13127.4 36220.6 47119 1.301
Ehad<300GeV 23093.2 7309.3 5817.3 13126.6 36219.8 47117 1.301
Nuhat>0 19838.1 2321.7 518.2 2840.0 22678.1 24898 1.098
Ybj<0.5 16157.8 585.7 250.4 836.1 16994.0 18060 1.063
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Table 6.5 shows the preselection of ν̄µ charged current events in reconstructed

level. From this table, it is obvious that there is still about 6.3 % disagreement

between Monte Carlo events and NOMAD data after all the cuts. We are going to

vary the normalization factors to get better matches between Monte Carlo events and

NOMAD data.

To ensure that the Monte Carlo matches the NOMAD data well, the following

method was used to fit the Monte Carlo events with NOMAD data. The initial step

needed to do is to choose the variables will be used to fit. The principle of choosing

the variables used for fitting is they should give a good separation of signal from

background. After checking the distributions of some kinematic variables, the three

variables selected for fitting are as follows: ν̂ (ν̂ is defined in Equation 6.5), Ybj

(Ybj is defined in Equation 6.6), and the missing transverse momentum Pm
T . The

normalization factors for ν̄µ charged current events, νµ charged current events, and

neutral current events are kν̄µCCnorm , kνµCCnorm and kNCnorm.

ν̂ = P lep
T − Pm

T

P hadron
T

. (6.5)

y = p · q
k · p = M(E − E ′)

EM
= 1− E ′

E
= ν

E
, (6.6)

where the variables, p, q, E, E’, ν have been defined at the beginning of chapter 3.

The procedure includes the following steps:

• Create the 3D distribution with respect to missing transverse momentum Pm
T ,

Bjorken variable Ybj, and ν̂;

• Divide the distribution into equi-populated 5 × 5 × 5 = 125 cubes. Because

the events are not distributed uniformly, the volumes of the cubes are not the

same.

• Run through all the possible normalization:
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– Set the default value of kν̄µCCnorm at 0.9 and vary it in steps of 0.001 from 0.9

to 1.1;

– Set the default value of kNCnorm at 1.9 and vary it in steps of 0.001 from 1.9

to 2.5;

– Set the default value of kνµCCnorm at 1.5 and vary it in steps of 0.001 from 1.4

to 1.5;

Then the total number of Monte Carlo events after normalization becomes

NMC =NCC
ν̄µ × kν̄µCCnorm +

NNC × kNCnorm+

NCC
νµ × kνµCCnorm

• Calculate the χ2 for each cube and sum over all of them.

χ2 = (Ndata−NMC)2

σ2
data

+σ2
MC

While σdata =
√
Ndata, and σMC =

√∑
j(
√
NMC(j))2, index j represents the

Monte Carlo events(ν̄µCC, νµ CC and NC).

• Get the parameter corresponding the minimum χ2.

kν̄µCCnorm = 0.961± 0.018

(shown in Figure 6.6 )

kNCNorm = 2.052± 0.052

(shown in Figure 6.7)

kνµCCnorm = 1.445± 0.051
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(shown in Figure 6.8)

Since the total number of points I used for fit is 125, the minimum χ2 equals

to 979.61, then the value χ2/DOF is 7.837 (DOF means degree of freedom).

Compared to the χ2 before this 3D fit, it is reduced.
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Figure 6.6: χ2 distribution with respect to kν̄µCCnorm , fix kNCnorm = 1.062, kνµCCnorm = 1.445
using 125 points.

• After fitting with the 3D distribution of Pm
T , Ybj, and ν̂, I also created the 2D

distributions of Ybj and ν̂, and fitted the MC events to the Data as a check.

The normalization factors I got from this 2D fit are

k
′ν̄µCC
norm = 1.103± 0.016;

k
′νµ
norm = 0.989± 0.016;

where k′νµnorm is applied on both the νµ charged and neutral current events. The

total points I used for this 2D fit is 50, and The minimum χ2 is 228.125, then

the χ2/DOF equals to 4.56. Which means the χ2/DOF is reduced from 7.80 to
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Figure 6.7: χ2 distribution with respect to kNCnorm, fix kν̄µCCnorm = 0.961, kνµCCnorm = 1.445
using 125 points.

4.56 by this 2D fit. Then the new full normalization factors I got after the 2D

fit are

pν̄µCCnorm = 0.961× 1.103 = 1.06;

pNCnorm = 2.052× 0.989 = 2.03;

pνµCCnorm = 1.445× 0.989 = 1.43;

• After fitting with the 2D distribution of Ybj and ν̂ cut, I refitted the ν̄µ charged

current events again with Ybj distribution as a check. For this 1D fit, all the

events are divided into 5 equi-populated bins according to the Ybj distribution.

The minimum value of χ2 is 25.600, then the value χ2/DOF equals to 5.120.

Compared to χ2/DOF before this 1D fit, it is reduced by a factor of 1.98.

p
′ν̄µCC
norm = 0.961× 1.103× 0.975 = 1.03;
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Figure 6.8: χ2 distribution with respect to kνµCCnorm , fix kν̄µCCnorm = 0.961, kNCnorm = 2.052
using 125 points.

pNCnorm = 2.052× 0.989 = 2.03;

pνµCCnorm = 1.445× 0.989 = 1.43;

• Get the total normalization factor

p
′ν̄µCC
norm = 0.961×1.103×0.975 = 1.03, which means the total ν̄µ charged current

events

NCC
ν̄µ = 1436000× 0.025× 1.03 = 36977;

This fit procedure is only used to define the center value of the background scale

factors. The large value of χ2 from the fit can be explained by the systematic uncer-

tainties which were not included in the χ2 calculation. These systematic uncertainties

on the background subtraction will be estimated using a different ways of background

normalization (which will be shown in section 6.8).
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The first two columns of Table 6.6 show the number of generated and recon-

structed ν̄µ charged current events in 7 visible energy (Evis) bins. By calculating

the ratio between the reconstructed and generated values in each bin, we can get

the corresponding efficiency, which are shown in the last column of Table 6.6. The

elements in the last column of Table 6.6 construct the 7 dimensional efficiency vector,

and it is going to be used to calculated the corrected signal. Besides the efficiency

vector, the efficiency matrix is also used to calculate the fully corrected signal.

Table 6.6: The efficiency (ratio between Reconstructed ν̄µ CC and Simulated ν̄µ CC
events) in 7 Eν bins.

Evis(GeV) Generated NCC
ν̄ Reconstructed NCC

ν̄ Efficiency
2.5-8.0 3970.6 1160.3 0.292
8.0-15.0 6179.3 2566.7 0.415
15.0-20.0 3933.6 1777.5 0.452
20.0-30.0 6098.3 2905.4 0.476
30.0-50.0 7618.3 3782.4 0.496
50.0-100.0 6608.1 3288.7 0.498
100.0-300.0 1491.9 677.0 0.454
2.5-300.0 35900.0 16157.8 0.450

Table 6.7 and Table 6.8 show the generated, reconstructed ν̄µ charged current

events, charged current (CC) background, neutral current (NC) background, number

of data before normalization with the factor from fit, and raw signal, reconstructed ν̄µ

charged current events, background after normalization with respect to Evis. With

these numbers, we can calculated the fully corrected signal (The fully corrected signal

is the ν̄µ charged current events in this section). Where Normalized Signal equals to

the reconstructed signal times the normalization factor I got from fit (p′ν̄µCCnorm = 1.03,

pNCnorm = 2.03, pνµCCnorm = 1.43). Raw signal equals to the Number of data in each bin

(Ndata) minus total normalized background in the same bin (Tot-Bkg). Using the

Raw signal in each Evis bin divide by the efficiency in the corresponding bin, we get

the fully corrected signal in the 7 Evis bins shown in Table 6.9.
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Table 6.7: Reconstructed ν̄µ CC events without normalization with the factor from fit.

Evis(GeV) NCC
ν̄µ generated NCC

ν̄µ reconstructed CC-Bkg NC-bkg Tot-Bkg NMC Ndata

2.5-8.0 3970.6 1160.3 21.1 34.2 55.3 1215.6 1260
8.0-15.0 6179.3 2566.7 77.7 44.0 121.7 2688.4 2513
15.0-20.0 3933.6 1777.5 54.3 27.5 81.8 1859.2 1733
20.0-30.0 6098.3 2905.4 95.3 39.3 134.6 3040.0 2997
30.0-50.0 7618.3 3782.4 129.7 50.1 179.8 3962.2 4067
50.0-100.0 6608.1 3288.7 151.1 42.2 193.3 3481.9 4217
100.0-300.0 1491.9 677.0 56.6 13.1 69.7 756.7 1273
2.5-300.0 35900.0 16157.8 585.7 250.4 856.1 16994.0 18060

Table 6.8: Raw signal and fully corrected data after normalization.

Evis(GeV) NCC
ν̄µ Reconstructed Normalized Signal Raw Signal Tot-Bkg NMC Ndata Ndata/NMC

2.5-8.0 1160.3 1199.2 1160.4 99.6 1298.8 1260 0.970
8.0-15.0 2566.7 2652.6 2312.7 200.3 2852.9 2513 0.881
15.0-20.0 1777.5 1837.0 1599.6 133.4 1970.4 1733 0.880
20.0-30.0 2905.4 3002.7 2781.0 216.0 3218.7 2997 0.931
30.0-50.0 3782.4 3853.2 3780.0 287.0 4140.2 4067 0.982
50.0-100.0 3288.7 3398.8 3915.4 301.6 3700.4 4217 1.140
100.0-300.0 677.0 699.7 1165.5 107.5 807.2 1273 1.577
2.5-300.0 16157.8 16698.8 16714.7 1345.3 18044.1 18060 1.001
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Table 6.9: Fully corrected signal got from efficiency vector (shown in Table 6.6).

Evis(GeV) Raw Signal Efficiency Full Corrected Signal
2.5-8.0 1160.4 0.292 3970.9
8.0-15.0 2312.7 0.415 5567.8
15.0-20.0 1599.6 0.452 3539.9
20.0-30.0 2781.0 0.476 5793.8
30.0-50.0 3780.0 0.496 7613.5
50.0-100.0 3915.4 0.498 7830.8
100.0-300.0 1165.5 0.454 2568.4
2.5-300.0 16714.7 0.450 37137.3

Where, in Table 6.9, the Fully Corrected Signal equals to the Raw Signal divide

by Efficiency ( Ratio of Reconstructed Signal and Generated Signal). Aside from the

efficiency vector, the fully corrected signal in 7 Evis bins are also calculated from

the efficiency matrix, which is shown in Table 6.13, which are going to be used as

denominator of ratio between the coherent π− and ν̄µ charged current events.

Table 6.10 shows the number of ν̄µ charged current events as a function of Eν and

Evis before multiple the normalization factor got from the fit. Using the elements

in this table times the normalization factors and divide by the generated ν̄µ charged

current events in Table 6.6, we can get the efficiency matrix which are shown in

Table 6.11.

After get the efficiency matrix, to calculate the Raw signal, the background after

normalization is still needed to be considered. The background matrix after normal-

ization is shown in Table 6.12.

Table 6.11 shows the efficiency matrix of ν̄µ charged current event selection in

neutrino beam mode analysis. Table 6.12 shows the background matrix in each Evis

and Eν bin. The Raw Signal in each Evis bin can be calculated from the number of

NOMAD data minus the number of background after normalization in each bin. The

fully corrected signal can be calculated using the number of Raw Signal divide by the

efficiency in the same Evis bin, which are shown in Table 6.13.
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Table 6.10: ν̄µ CC events as a function of Eν (Evis) before normalization with the factor got from fit.

Eν \ Evis 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0 2.5-300.0
2.5-8.0 827.4 9.4 0.1 0 0 0 0 837.0
8.0-15.0 331.0 2028.6 22.6 0.1 0 0 0 2382.3
15.0-20.0 1.4 505.2 1221.3 30.0 0.1 0.1 0 1758.1
20.0-30.0 0.4 21.8 527.5 2354.7 44.8 0.4 0 2949.6
30.0-50.0 0.1 1.6 5.7 517.3 3340.8 61.2 0 3926.8
50.0-100.0 0 0.1 0.2 3.1 396.4 3099.6 41.3 3540.6
100.0-300.0 0 0 0 0 0.3 127.4 635.6 763.4
2.5-300.0 1160.3 2566.7 1777.5 2905.4 3782.4 3288.7 677.0 16157.8

Table 6.11: ν̄µ CC efficiency matrix.

Eν \ Evis 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0 2.5-300.0
2.5-8.0 0.21 0 0 0 0 0 0 0.02
8.0-15.0 0.08 0.33 0.01 0 0 0 0 0.07
15.0-20.0 0 0.08 0.31 0 0 0 0 0.05
20.0-30.0 0 0 0.13 0.39 0.01 0 0 0.08
30.0-50.0 0 0 0 0.08 0.44 0.01 0 0.11
50.0-100.0 0 0 0 0 0.05 0.47 0.03 0.10
100.0-300.0 0 0 0 0 0 0.02 0.43 0.02
2.5-300.0 0.29 0.42 0.45 0.48 0.50 0.50 0.45 0.45
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Table 6.12: ν̄µ Background matrix(the elements in this table is the total background in each bin).

Eν \ Evis 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0 2.5-300.0
2.5-8.0 13.2 0 0 0 0 0 0 13.2
8.0-15.0 38.0 81.4 2.0 0 0 0 0 121.4
15.0-20.0 0 54.3 42.6 0 0 0 0 96.9
20.0-30.0 0 0 53.4 98.5 8.4 0 0 160.3
30.0-50.0 0 0 0 75.6 142.8 16.2 0 234.6
50.0-100.0 0 0 0 0 103.3 170.1 10.5 283.9
100.0-300.0 0 0 0 0 0 113.1 96.1 209.2
2.5-300.0 51.2 135.7 98.0 174.1 254.5 299.4 106.6 1119.5
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Table 6.13: Fully corrected signal got from efficiency matrix.

Evis(GeV) Raw signal Efficiency Fully Corrected Signal
2.5-8.0 1208.8 0.29 4168.3
8.0-15.0 2377.3 0.42 5660.2
15.0-20.0 1635.0 0.45 3633.3
20.0-30.0 2822.9 0.48 5881.0
30.0-50.0 3812.5 0.50 7625.0
50.0-100.0 3917.6 0.50 7835.2
100.0-300.0 1166.4 0.45 2592.0
2.5-300.0 16940.5 0.45 37645.6

Artificial Neural Network Method

To separate signal from background, besides the cuts on kinematic variables, neural

network is trained using Monte Carlo events for future separation. Artificial neural

networks (ANN or just NN) are widely used in physics data analysis [21]. Most of

the neural networks are multilayer perceptions: input layer, at least one hidden layer

and output layer. All the layers are made up of interconnected neurons.

1. Input layer. The neurons in a input layer receive the inputs, normalize them

and forward them to the first hidden layer [21].

2. Hidden layer. The input to each neuron in a hidden layer is a linear combina-

tion of the outputs of the previous layer. The output is a sigmoid function of that

combination. A sigmoid function is defined as

S(x) = 1
1 + e−x

3. Outputlayer. Each neuron in any subsequent layer is computed as a linear

combination of the outputs of the previous layer.

In physics analysis with neural network, at first, we need to take multiple kine-

matic variables (I1, I2...) as input and use a single output to indicate signal or back-

ground. (f = f(I1, I2...)) The neural network should be trained and validated with in-

dependent Monte Carlo samples before being used in analysis, to make sure that there

95



www.manaraa.com

is no over training. The neural network is trained using Monte Carlo events(signal

and background) with output equals to 1 for signal and 0 for the background. The

aim of using neutral network is to minimize the total error of weighted examples,

which is defined as the sum of in quadrature, divided by two, of the error on each

individual output neuron. The output of the neural network is the probability of

signal against background.

1 Artificial Neutral Network Method

Artificial neural networks (ANN or just NN) are widely used in physics data
analysis. A neutral network composes of at least 3 layers: input layer, hidden
layer and output layer. Each of the layers has one or more neutrons. Different
Layers are connected by bias and weighted links between them.

1. Input layer. The neurons in a input layer receive the inputs, normalize
them and forward them to the first hidden layer.

2. Hidden layer. The input to each neuron in a hidden layer is a linear
combination of the outputs of the previous layer. The output is a sigmoid
function of that combination. There can be more than one hidden layers.

3. Output layer. The output of a output layer is simply a linear combination
of the outputs of the previous layer.

A linear combination of sigmoids can approximate any continuous function.
In physics analysis, a neutral network are often designed to take kinematic
variables as inputs and use a single output to indicate signal or background. It
is trained with a Monte Carlo sample with output = 1 for the signal and 0 for
the background and tested by an independent sample to make sure there is no
over-training. The trained neural network is then a function of inputs with the
output being the probability of signal.

Figure 1: An example of the structure of an artificial neutral network.

We use TMultiLayerPerceptron class in root to built neural networks. The
structure of NN is showed in figure. The input layer has 9 input variables which
are 3-momentums (px, py, pz) of reconstructed muon, proton and pion tracks.
It is followed by 3 hidden layers, with 9, 6 and 3 neurons respectively. The
output is defined as 1 for RES 0 for DIS. A sample of RES (signal) and DIS
(background) MC files are used as training sample. The trained NN is then
tested by an independent sample of RES and DIS MC files to make sure no
over-training. NN successfully separates RES signal from DIS background as
showed in figure.

1

Figure 6.9: An example of the structure of an artificial neutral network [21].

We use TMultiLayerPerceptron class in root to build neural networks. The struc-

ture of NN is showed in figure 6.9.

Kinematic Analysis

When the neural network is being used to separate the Coherent π− signal from

background, the first thing we need to decide is which values will be inputs. In this

analysis, the following three variables were used as input:
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• pmT : missing transverse momentum, which is the measurement of the neutrino

beam divergence.

• Xbj: the fraction of the nucleon’s momentum carried by the struck quark.

• ζπ: Eπ × (1− cos(θπ)), which means the forwardness of the outgoing Pions.

The principle of choosing input variables includes good separation power and good

agreement between Monte Carlo events and data. Using the neural network, there is

only one output variable in the coherent π− analysis, which could be used to separate

the signal from background.
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Figure 6.10: Pm
T distribution of the neutrino beam mode data (positive focusing

data: FocP).

The distributions of Pm
T , Xbj, and ζ are shown from Figure 6.10 to Figure 6.12.

In these figures, the total Monte Carlo events (Tot MC) is the sum of the signal

(Coherent π−) and total background (Tot Bkg).
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Figure 6.11: Xbj distribution of the neutrino beam mode data (positive focusing
data: FocP).
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Figure 6.12: ζ distribution of the neutrino beam mode data (positive focusing data:
FocP).
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Figure 6.13: The NN distribution comparison of background and signal.
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Figure 6.14: The NN distribution comparison of Data and MC.
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Figure 6.13 shows the output of the neural network including the distributions

of signal (Coherent π−), ν̄µ CC background, νµ CC background, NC background,

Coherent ρ−, total background (TotBkg: sum of CC background, NC background

and background from coherent ρ−) as a function of NN output value, and so on.

NN-output is a value from 0 to 1, it is obvious that Background dominates the region

NN output less than 0.3, and Signal dominates the region NN output greater than

0.7.

With the output of neural network, the events in background and signal region

can be normalized. Let’s use BN to represent the Background Normalization factor

and SN represent the Signal Normalization factor. They are calculated as following

steps:

At first, all the events are divided into 7 bins according to visible energy (Evis)

from 2.5 to 300 GeV (Evis={2.5, 8, 15, 20, 30, 50, 100, 300}).

Then fit the Monte Carlo events to NOMAD data bin by bin. The background nor-

malization factor (BN), signal normalization factor (SN), and the number of corrected

signal (Ncorr−sig) in each bin are calculated with the following formulas (BNtemp is

a temporary factor used to calculate SN):

BNtemp = N
b[i]
data

N
b[i]
bkg

SN = (Ns[i]
data
−bntemp×Ns[i]

bkg
)

N
s[i]
sig

;

BN = (Nb[i]
data
−sntemp×Nb[i]

sig )
N
b[i]
bac

;

Ncorr−sig=N s[i]
data −N s[i]

bkg ×BN

Where i is the index of Evis bin number. N s[i]
data is the number of NOMAD data

events in signal region. N b[i]
data is the number of NOMAD data events in background

region. N s
bkg[i] is the number of background events in signal region. N b

sig[i] is the

number of signal events in background region. N b
bkg[i] is the number of background

events in background region. N s
sig[i] is the number of signal events in signal region.
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Coherent π− in Neutrino Mode

After we got the number of the ν̄µ charged current events in 7 visible energy (Evis)

bins, in this section, we will measure the number of coherent π− in each Evis bin.

Both of them are going to be used to calculate the ratio between coherent π− and ν̄µ

charged current interactions.

Table 6.14: Normalization of the MC events.

ν̄µ CC 35900
ν̄µ CC DIS 34028.5
ν̄µ NC DIS 341.05
ν̄µ QE 802.1
ν̄µ RES 1069.5
ν̄ cohPi 417.1
ν̄ cohRho 250.3
νµ CC 1436001
νµ QE 32084.0
νµ RES 42778.6
νµ CC DIS 1361138
νµ NC DIS 531320.7

Table 6.14 shows the numbers of normalized Monte Carlo events with beamweight

(flux reweight) and Z-weight. These numbers are calculated from:

The total number of νµ charged current events within Fiducial Volume is normal-

ized to 1436000 [52]; The total number of ν̄µcharged current events equals to 0.025

× 1436000 [8];

The ratio between neutral current and charged current events NNC/NCC equals

to 0.37, ratio between non-deep inelastic and deep inelastic events Nnon−Dis/NDis

equals to 0.055; ratio between quasi-elastic and resonance events NQE/NRES equals

to 0.75; ratio between coherent π and quasi-elastic events NCoh−π/NQE equals to

0.26; NCoh−ρ/NCoh−π equals to 0.6;
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Table 6.15: Summary of event reduction in different data and MC samples for the preselection cuts.

NCC
ν̄ NCC

ν NNC Cohρ− TotBkg Cohπ− Ndata Ratio
Total 47790.3 1645469 628612.1 289.6 2322161 735.8 – –
Pfermi 47380.6 1631201 623116.4 289.6 2301988 735.8 – –
W2S 40610.1 1555351 589725.7 289.6 2185977 735.8 – –
Gen-FV 36076.4 1436828 544853.6 257.6 2018015 638.3 – –
Eπ>0.5(Coh only) 36076.4 1436828 544853.6 250.3 2018009 417.1 – –
2.5<Evis<300 35900.0 1436001 544603.7 250.3 2016755 417.1 – –
total 38919.5 1434877 464599.6 247.4 1938643 590.2 4018980 2.07
pfermi 38595.7 1422826 460710.6 247.4 1922380 590.2 4018980 2.08
W2 33404.4 1357502 460710.6 247.4 1850530 590.2 4018980 2.17
Rec-Fidu 29777.2 1255851 427703.2 219.6 1712318 528.1 3135328 1.83
Eπ>0.5(Coh only) 29777.2 1255851 426469.6 201.7 1712300 400.1 3135328 1.83
Ph2mu 27445.9 1111808 15116.2 175.5 1154546 357.6 1240972 1.07
Tube/Veto 27282.6 1107721 15038.4 174.5 1150216 355.3 1185892 1.03
Ncand=2 4218.0 133866.6 567.5 141.1 138793.2 309.2 145171 1.04
µ+/Eµ 4212.1 253.9 305.4 139.7 4911.1 307.9 10163 1.95
Had- 2568.2 150.4 230.0 138.5 3087.0 305.8 6607 1.95
θµ+,π−<177.5 2566.1 150.4 229.3 138.5 3084.2 305.6 4612 1.36
Fit Matrix error 2548.0 140.1 224.4 137.2 3049.6 303.5 4192 1.25
Pπ>1.0 967.8 111.6 137.5 129.2 1346.0 249.8 2180 1.37
θµ+,π−<0.5 689.8 85.0 132.3 128.6 1035.7 239.1 1667 1.31
Pm
T <0.5 296.5 30.1 12.2 116.1 454.9 231.4 754 1.10

(pπ − pneu)/(pπ + pneu) > 0 230.0 15.5 8.1 65.8 319.4 230.9 568 1.03
nV0 cut 222.8 14.6 7.9 56.6 301.9 230.7 556 1.04
Nclu cut 190.7 11.2 6.4 25.1 233.5 225.0 470 1.03
mgg<0.5 190.7 11.2 6.4 25.1 233.5 225.0 470 1.03
19512<Run<21270 190.7 11.2 6.4 25.1 233.5 225.0 415 0.91

102



www.manaraa.com

Table 6.15 shows the summary of event reduction in different data and Monte

Carlo samples for the preselection cuts. From this table, we can see that even after

all the variable cuts, there is still about 9% disagreement between the Monte Carlo

events and NOMAD data.

To get better matches between Monte Carlo events and NOMAD data, neural

network training is used in this analysis which has been introduced in previous sec-

tions.

NN-output

Se
ns

iti
vi

ty

↑
0.7 for signal region

↓
0.4 for background

 region

Figure 6.15: The distribution of sensitivity of the neural network in coherent π−
analysis of neutrino beam mode.

Figure 6.15 shows the distributions of the sensitivity which is defined as

Sensitivity = NCorr−Sig
√
NCorr−Sig +NNorm−Bkg

, (6.7)

where NCorr−Sig is the number of corrected signal events, NNorm−Bkg is the number

of normalized background events. This figure is plotted from the result in Table 6.16.

The sensitivity gave us a tool to find the optimal cut values to define the signal and
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background regions. Combine the distribution of the sensitivity and Figure 6.13, we

finally chose 0.7 as the cut value of signal region and 0.4 as the cut value of background

region, then the signal region is from 0.7 to 1 and the background region is from 0

to 0.4. The background region is going to be used to calibrate the background of

NOMAD data. The region from 0.4 to 0.7 is not ideal region either for background

normalization or measurement of signal. Because the ratio of signal to background is

too close to 1.

Some kinematic variable distributions in background (control) region and signal

region after neural network are shown from Figure 6.16 to Figure 6.35. It is obvious

that there is a good agreement between Monte Carlo events and NOMAD data after

the neural network analysis. In these figures, "Dt" represents NOMAD data; "To-

tal MC" represents total Monte Carlo events; "Tot Bkg" represents total background

events; "ν̄ CC" represents ν̄µ charged current events; "ν CC" represents νµ charged

current events; "NC" represents the combination of ν̄µ and νµ neutral current events;

"Coh π−" represents the coherent π− events, which is also the signal in this analysis,

"Coh ρ−" represents the coherent ρ− events. All the variable distributions are consis-

tent with the theoretical prediction. For example, the signal (coherent π− events) is

with a lower value of Q2 compared to the background. The Bjorken variable Xbj is

defined as

Xbj = Q2

2Mν
, (6.8)

when the target is at rest. Xbj is also very small compared to the background. The

missing transverse momentum Pm
T of signal is smaller compared to the background.

ζπ which represent the forwardness of the outgoing hadron is also a smaller value

compared to the background, which means the meson Pion is very forward outgoing.

The magnitudes of the square of the 4 momentum transfer to the nucleus |t| of signal

is also very small compared to the background. The angle between the leading lepton

µ+ and the outgoing meson π− of signal is smaller compared to the background. All
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other variable distributions also gave a good agreement between the Monte Carlo

events and NOMAD data and are also consistent with the theoretical predictions.

In next step, the neural network analysis will be used to separate the signal from

background.

Table 6.16 gives out the result of total number of background (Tot-Bkg), back-

ground normalization factor (BN), normalized background, number of Data, Raw sig-

nal (Raw Sig: which equals to the number of data minus the normalized background),

Efficiency (Eff: which equals to the raw signal divide by the number of Data), and

corrected signal (Corr-Sig: which equals to raw signal divide by efficiency) with dif-

ferent NN cut values. The corrected signal error includes the statistical error and the

error comes from the background normalization.

Figure 6.36 shows a coherent π− sample picture after all the kinematic cuts and

neural network output cut of NOMAD events. In this figure, there are only two tracks

are observed. The longer one is identified as Muon (µ+) which is also called leading

lepton. The shorter one is identified as Pion (π−). Some values of this event are listed

in Table 6.17. These values are consistent with the theoretical prediction described

before, such as the small 4-momentum transfer Q2, the small missing transverse

momentum Pm
T , the small value of forwardness of meson ζπ, the small value of angle

between Muon and Pion.

105



www.manaraa.com

bjY
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v

e
n

ts

0

5

10

15

20

25

30

35

40
Dt

Total MC
­

πCoh 
Tot Bkg

­CCν

­CCν

NC
­

ρCoh 

Figure 6.16: The Ybj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.17: The Ybj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.18: The Xbj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.19: The Xbj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.20: The ζπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.21: The ζπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.22: The Q2 distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.23: The Q2 distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.24: The Pm
T distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.25: The Pm
T distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.26: The t distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.27: The t distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.28: The t′ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.29: The t′ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.30: The Eπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.31: The Eπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.32: The ΦPT
had distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Figure 6.33: The ΦPT
had distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC(histogram).
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Figure 6.34: The angleθ between Muon and Pion distribution from different contri-
butions, ν-CC, ν̄-CC, NC, ν̄-Cohρ− and Cohπ− in background (control) region and
the Comparison between Data (points with error bars) and MC(histogram).
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Figure 6.35: The angle θ distribution from different contributions, ν-CC, ν̄-CC,
NC, ν̄-Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data
(points with error bars) and MC(histogram).
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Table 6.16: The NN cut table (the beam(flux) reweight is applied to all the ν̄µ-CC
events).

NN Tot-Bkg BN Norm-Bkg Data Raw Sig. Eff. Corr-Sig. (Err = Stat., BN)
0.4 70.6 0.95 67.1 238 171 0.48 356 ± 36.72 ± 17.12
0.41 68.9 0.95 65.5 235 169 0.478 354.9 ± 36.63 ± 16.81
0.42 67.7 0.95 64.3 233 169 0.475 355.1 ± 36.62 ± 16.59
0.43 65.2 0.948 61.8 233 171 0.473 362.2 ± 36.66 ± 16.07
0.44 64.1 0.948 60.7 231 170 0.47 362 ± 36.65 ± 15.87
0.45 62 0.949 58.9 226 167 0.467 357.5 ± 36.42 ± 15.45
0.46 60.6 0.949 57.5 224 166 0.465 358.2 ± 36.41 ± 15.19
0.47 58.8 0.948 55.7 223 167 0.462 362.4 ± 36.46 ± 14.82
0.48 57.1 0.948 54.1 220 166 0.459 361.4 ± 36.37 ± 14.49
0.49 56 0.949 53.1 217 164 0.456 359.4 ± 36.32 ± 14.3
0.5 55 0.948 52.1 216 164 0.453 361.9 ± 36.43 ± 14.14
0.51 53.8 0.946 50.9 216 165 0.45 367.1 ± 36.59 ± 13.92
0.52 52.3 0.944 49.4 215 166 0.446 370.9 ± 36.7 ± 13.66
0.53 51.6 0.945 48.8 212 163 0.443 368.5 ± 36.72 ± 13.57
0.54 50 0.943 47.2 211 164 0.439 373.3 ± 36.88 ± 13.28
0.55 48.3 0.942 45.5 209 163 0.435 376 ± 36.94 ± 12.94
0.56 47.1 0.941 44.3 208 164 0.43 380.3 ± 37.14 ± 12.73
0.57 45.6 0.94 42.9 206 163 0.426 382.5 ± 37.23 ± 12.47
0.58 44.6 0.94 41.9 203 161 0.422 381.9 ± 37.32 ± 12.3
0.59 42.9 0.94 40.3 200 160 0.418 382.4 ± 37.34 ± 11.97
0.6 41.9 0.942 39.5 195 156 0.413 376.6 ± 37.26 ± 11.81
0.61 40.5 0.942 38.1 192 154 0.408 377.1 ± 37.36 ± 11.56
0.62 39.6 0.942 37.3 189 152 0.403 376.5 ± 37.49 ± 11.44
0.63 38 0.944 35.8 184 148 0.398 372.3 ± 37.4 ± 11.11
0.64 36.5 0.945 34.5 179 144 0.392 368.6 ± 37.41 ± 10.86
0.65 35 0.946 33.1 175 142 0.386 367.8 ± 37.49 ± 10.56
0.66 33.9 0.945 32 172 140 0.38 368.2 ± 37.67 ± 10.37
0.67 32.3 0.943 30.4 170 140 0.373 373.9 ± 38.02 ± 10.07
0.68 30.5 0.943 28.8 166 137 0.367 374.3 ± 38.14 ± 9.686
0.69 29.4 0.944 27.7 161 133 0.36 370.6 ± 38.26 ± 9.509
0.7 27.7 0.947 26.2 154 128 0.351 363.8 ± 38.26 ± 9.183
0.71 26 0.944 24.6 152 127 0.343 371.4 ± 38.77 ± 8.836
0.72 25.1 0.945 23.7 147 123 0.335 368.3 ± 39.06 ± 8.735
0.73 23.8 0.947 22.5 141 118 0.326 362.8 ± 39.18 ± 8.49
0.74 22.6 0.952 21.5 133 111 0.318 351.1 ± 39.14 ± 8.292
0.75 20.8 0.95 19.7 129 109 0.308 354.7 ± 39.58 ± 7.852
0.76 19.3 0.949 18.3 125 107 0.299 357.1 ± 40.04 ± 7.524
0.77 17.9 0.951 17 119 102 0.289 352.9 ± 40.31 ± 7.206
0.78 16.6 0.955 15.9 111 95.1 0.279 341 ± 40.34 ± 6.937
0.79 15.6 0.96 15 103 88 0.268 328.4 ± 40.47 ± 6.771
0.8 14.5 0.956 13.9 101 87.1 0.256 340.1 ± 41.8 ± 6.614
0.81 13.4 0.959 12.9 94 81.1 0.245 331.3 ± 42.17 ± 6.389
0.82 12.7 0.956 12.2 91 78.8 0.233 338.5 ± 43.54 ± 6.365
0.83 11.7 0.949 11.2 90 78.8 0.22 357.8 ± 45.55 ± 6.209
0.84 11.2 0.949 10.6 85 74.4 0.208 358.2 ± 46.97 ± 6.264
0.85 9.86 0.949 9.36 79 69.6 0.194 358.1 ± 48.23 ± 5.908
0.86 8.48 0.95 8.05 72 63.9 0.18 355.9 ± 49.7 ± 5.496
0.87 7.34 0.949 6.97 65 58 0.163 357.1 ± 52.08 ± 5.258
0.88 6.09 0.943 5.74 60 54.3 0.145 375.1 ± 55.92 ± 4.905
0.89 4.93 0.94 4.64 52 47.4 0.124 381.3 ± 60.45 ± 4.625
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Figure 6.36: Coherent π− event picture originated by ν̄µ contamination in the neutrino mode.117
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Table 6.17: Kinematic information of a coherent π− event corresponding to Figure 6.36 survived from preselection and Neural
Network.

Anti-neutrino Beam Mode
Run Event NN(lh) XVR YVR ZVR
19796 11602 0.606 24.3 -37.8 291
Pm
T ΦLH ΦmPtH Θµπ t ζ Xbj Ybj

0.0919 177 20.6 0.308 0.0256 0.0857 0.125 0.0799
Ncand Nprim Nsecond Nvzero nhitMuon nhithad
2 2 0 0 14 13
particle E |P| Px Py Pz Θ Φ
Muon 25.3 25.3 -0.271 -0.633 25.3 1.56 66.9
Pion 2.19 2.19 0.21 0.568 2.1 16.1 69.7
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Determination of the Coherent π− Cross-section

Instead of calculating the absolute cross-section of coherent π− interactions in NO-

MAD, the R defined in Equation 6.9 is calculated as the ratio between the cross-

section of coherent π− events and inclusive ν̄µ charged current cross-section.

R = σ(Cohπ−)
σ(ν̄µCC) . (6.9)

We calculated R instead of the absolute cross-sections for two reasons: one is nor-

malization; the other one is, some systematic uncertainties can be removed because

they share the same systematic uncertainties. The numbers of inclusive ν̄µ charged

current events in each bin have been shown in Table 6.13. Next step, we are going to

calculate the coherent π− in each bin.

Table 6.18: BN and SN table in 7 visible energy (Evis) bins, calculated from variable
BN depends on the Evis(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) BN SN δBN R×10−3(Stat.)
2.5-8.0 0.7865 0.6167 0.2622 14.520± 5.224
8.0-15.0 0.835 0.8941 0.1996 16.490± 3.333
15.0-20.0 1.213 0.5591 0.3541 7.851 ± 3.217
20.0-30.0 0.8609 1.179 0.2712 12.760± 2.608
30.0-50.0 0.8089 0.9373 0.2715 7.362 ± 1.795
50.0-100.0 1.658 0.9211 0.627 4.094 ± 1.668
100.0-300.0 0.4954 1.943 1.251 3.894 ± 2.341
2.5-300.0 0.9444 0.8886 0.1165 9.845 ± 1.047

Table 6.18 and Table 6.19 show the result of R (ratio between coherent π− and

ν̄µ charged current events.) in 7 visible energy (Evis) bins which are calculated from

variable BN and fixed BN.

Figure 6.37 shows the distribution of BN as a function of visible energy (Evis) in

7 bins, which are corresponding to the result in Table 6.18.
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Table 6.19: BN and SN table in 7 visible energy (Evis) bins, using a fixed
BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) BN SN δBN R×10−3(Stat.)
2.5-8.0 0.9444 0.6167 0.1165 13.770± 5.257
8.0-15.0 0.9444 0.8941 0.1165 16.080± 3.327
15.0-20.0 0.9444 0.5591 0.1165 8.492 ± 2.966
20.0-30.0 0.9444 1.179 0.1165 12.600± 2.588
30.0-50.0 0.9444 0.9373 0.1165 7.138 ± 1.780
50.0-100.0 0.9444 0.9211 0.1165 4.748 ± 1.406
100.0-300.0 0.9444 1.943 0.1165 3.615 ± 2.294
2.5-300.0 0.9444 0.8886 0.1165 9.845 ± 1.047
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Figure 6.37: The distribution of BN as a function of visible energy (Evis) in 7 bins(the
beam(flux) reweight is applied to all the ν̄µ-CC events).
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Table 6.20: Signal in signal region, and Generated signal information calculated from
variable BN.

Evis(GeV) Sig-S Sig-Gen Efficiency
2.5 - 8.0 19.262 98.158 0.197
8.0 - 15.0 39.467 104.391 0.378
15.0 - 20.0 20.909 51.016 0.410
20.0 - 30.0 27.114 63.615 0.426
30.0 - 50.0 26.177 59.890 0.437
50.0 - 100.0 15.043 34.827 0.432
100.0 - 300.0 1.908 5.195 0.367
2.5 - 300.0 150 417.1 0.360
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Table 6.21: Norm-bkg, Corr-sig as a function of Evis in 7 bins calculated from variable BN.

Evis Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 3.89 0.787 3.06 15 11.9 0.197 60.53 ± 21.15 ± 5.17
8.0 - 15.0 8.04 0.835 6.71 42 35.3 0.378 93.34 ± 18.38 ± 4.243
15.0 - 20.0 3.55 1.21 4.31 16 11.7 0.41 28.52 ± 11.28 ± 3.068
20.0 - 30.0 4.67 0.861 4.02 36 32 0.426 75.03 ± 15.04 ± 2.972
30.0 - 50.0 5.52 0.809 4.46 29 24.5 0.437 56.13 ± 13.25 ± 3.428
50.0 - 100.0 3.1 1.66 5.14 19 13.9 0.432 32.08 ± 12.27 ± 4.502
100.0 - 300.0 0.591 0.495 0.293 4 3.71 0.367 10.09 ± 5.724 ± 2.015
2.5 - 300.0 29.4 0.944 27.7 161 133 0.36 370.6 ± 38.26 ± 9.509
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Table 6.20 shows the Efficiency as a function of visible energy (Evis) in 7 bins,

which are calculated from ratio of the signal in signal region (Sig-S) after all the

kinematic variable cuts and generated signal (Sig-Gen).

Table 6.21 shows the result of total background (Tot-bkg), BN, normalized back-

ground (Norm-bkg), data, raw signal (Raw-sig), Efficiency (Eff), corrected signal

(Corr-Sig) in 7 Evis bins. Norm-bkg equals to Tot-bkg times BN. Raw-sig equals

to data minus Norm-bkg. The Corr-Sig equals to the Raw-sig divide by Efficiency.

Table 6.22 and Table 6.23 show the result of R=σ(Cohπ−)
σ(ν̄µCC) calculated from variable BN

of neutrino beam mode data (Positive focusing data: FocP) in 7 Evis and Eν bins.

Figure 6.38 and Figure 6.39 show the distributions of R=σ(Cohπ−)
σ(ν̄µCC) and R×E in

both linear scale (top) and log scale (bottom), where R is calculated using a variable

BN.

Table 6.22: Corrected signal (Corr-Sig) as a function of Evis in 7 bins calculated
from variable BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 60.53 4168.3 14.520 ± 5.224
8 - 15 11.84 93.34 5660.2 16.490 ± 3.333
15 - 20 17.40 28.52 3633.3 7.851 ± 3.217
20 - 30 24.60 75.03 5881.0 12.760 ± 2.608
30 - 50 38.47 56.13 7625.0 7.362 ± 1.795
50 - 100 71.54 32.08 7835.2 4.094 ± 1.668
100 - 300 142.70 10.09 2592.0 3.894 ± 2.341
2.5 - 300 25.00 370.6 37645.6 9.845 ± 1.047
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Figure 6.38: R=σ(Cohπ−)
σ(ν̄µCC) distribution in both linear scale (top) and log scale (bot-

tom), calculated using a variable BN which depends on the Evis(the beam(flux)
reweight is applied to all the ν̄µ-CC events).
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Figure 6.39: R×<E> distribution in both linear scale (top) and log scale (bottom),
calculated using a variable BN which depends on the Evis(the beam(flux) reweight
is applied to all the ν̄µ-CC events).
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Table 6.23: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins calculated
from variable BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Eν <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 59.961 ± 21.310 4168.3 14.385 ± 5.112
8 - 15 11.84 92.977 ± 19.428 5660.2 16.426 ± 3.432
15 - 20 17.40 31.166 ± 11.704 3633.3 8.578 ± 3.221
20 - 30 24.60 72.886 ± 15.214 5881.0 12.393 ± 2.587
30 - 50 38.47 56.672 ± 13.981 7625.0 7.432 ± 1.834
50 - 100 71.54 32.738 ± 13.313 7835.2 4.178 ± 1.699
100 - 300 142.70 9.323 ± 5.539 2592.0 3.597 ± 2.137
2.5 - 300 25.00 370.6 ± 39.42 37645.6 9.845 ± 1.047
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Table 6.24: Norm-bkg, Corr-sig as a function of Evis in 7 bins, calculated from a fixed BN.

Evis Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8 3.89 0.944 3.67 15 11.3 0.197 57.42 ± 21.79 ± 2.297
8 - 15 8.04 0.944 7.59 42 34.4 0.378 91.01 ± 18.67 ± 2.477
15 - 20 3.55 0.944 3.35 16 12.6 0.41 30.85 ± 10.73 ± 1.01
20 - 30 4.67 0.944 4.41 36 31.6 0.426 74.12 ± 15.17 ± 1.277
30 - 50 5.52 0.944 5.21 29 23.8 0.437 54.42 ± 13.5 ± 1.471
50 - 100 3.1 0.944 2.93 19 16.1 0.432 37.21 ± 10.99 ± 0.8365
100 - 300 0.591 0.944 0.558 4 3.44 0.367 9.371 ± 5.943 ± 0.1876
2.5 - 300 29.4 0.944 27.7 161 133 0.36 370.6 ± 38.26 ± 9.509
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Table 6.25 and Table 6.26 show the result of R=σ(Cohπ−)
σ(ν̄µCC) calculated from a fixed

BN of neutrino beam mode data (Positive focusing data: FocP) in 7 Evis and Eν

bins.

Table 6.25: Corrected signal (Corr-sig) as a function of Evis in 7 bins, calculated
from a fixed BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 57.42 4168.3 13.770 ± 5.257
8 - 15 11.84 91.01 5660.2 16.080 ± 3.327
15 - 20 17.40 30.85 3633.3 8.492 ± 2.966
20 - 30 24.60 74.12 5881.0 12.600 ± 2.588
30 - 50 38.47 54.42 7625.0 7.138 ± 1.780
50 - 100 71.54 37.21 7835.2 4.748 ± 1.406
100 - 300 142.70 9.371 2592.0 3.615 ± 2.294
2.5 - 300 25.00 370.6 37645.6 9.845 ± 1.047

Table 6.26: Corrected signal (Corr-sig) as a function of Eν in 7 bins calculated from
a fixed BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Eν <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 56.921 ± 21.438 4168.3 13.656 ± 5.143
8 - 15 11.84 90.749 ± 19.359 5660.2 16.321 ± 3.420
15 - 20 17.40 33.195 ± 10.867 3633.3 9.136 ± 2.991
20 - 30 24.60 72.066 ± 15.065 5881.0 12.254 ± 2.562
30 - 50 38.47 55.295 ± 13.771 7625.0 7.252 ± 1.806
50 - 100 71.54 37.439 ± 11.369 7835.2 4.778 ± 1.451
100 - 300 142.70 8.743 ± 5.409 2592.0 3.373 ± 2.087
2.5 - 300 25.00 370.6 ± 39.42 37645.6 9.845 ± 1.047

Figure 6.40 and Figure 6.41 show the distributions of R=σ(Cohπ−)
σ(ν̄µCC) and R×E dis-

tributions in both linear scale (top) and log scale (bottom), where R is calculated

from a fixed BN.
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Figure 6.40: R=σ(Cohπ−)
σ(ν̄µCC) distribution in both linear scale (top) and log scale (bot-

tom), calculated from a fixed BN (the beam(flux) reweight is applied to all the ν̄µ-CC
events).
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Figure 6.41: R×<E> distribution in both linear scale (top) and log scale (bottom),
calculated from a fixed BN (the beam(flux) reweight is applied to all the ν̄µ-CC
events).
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6.5 Anti-neutrino Beam Mode

Similar to the analysis of the Neutrino Beam Mode NOMAD data, the NOMAD data

generated from Anti-neutrino Beam Mode is also analyzed with the same method.

With the anti-neutrino beam mode data, the ratio R which is the ratio between the

coherent π− events and ν̄µ charged current events is also calculated. Combine the

results of R from neutrino and anti-neutrino beam mode together, the averaged value

of R is calculated and compared to the result of coherent π+.

Normalization of Event Samples

Same as the process in the neutrino beam mode analysis, in the anti-neutrino beam

mode analysis, all the Monte Carlo events are also normalized based on coherent

events and inclusive charged current events.

Table 6.27: Normalization of (Anti-)Neutrino Beam Mode events [8].

Mode Event Number
νµ CC 13,000
νµ NC 13,000 × 0.35
ν̄µ CC 35,000
ν̄µ NC 35,000 × 0.35

Table 6.28: Ratios between interaction mode.

Ratio Value
NC/CC 0.37

non-DIS/DIS 0.055
QE/RES 0.75
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Preselection of ν̄µ CC Events

Table 6.29: Cut table of Monte Carlo events in generated level.

NCC
ν̄ NCC

ν NNC TotBkg NMC

Total 45462.8 14987.6 21038.9 36026.5 81489.3
Pfermi<1.0 45073.8 14859.9 20853.3 35713.2 80787.0
W2s>1.96(CCDIS) 39409.3 14157.7 18721.1 32878.8 72288.1
|GenX, (GenY-5)|<130 cm 35012.3 13073.7 16851.4 29925.1 64937.4Zmin < GenZ < 405 cm
2.5<Evis<300 35000 13000 16800 29800 64800

Table 6.29 shows the preselection of ν̄µ charged current events in generated level.

From this table, we can see that all the ν̄µ charged current events has been normalized

to 35,000, and νµ charged current events has been normalized to 13,000 which are

consistent with the prediction shown in Table 6.27.

Table 6.30 shows the preselection of ν̄µ charged current events in reconstructed

level with kinematic variable cuts. Similar to the result in the neutrino beam mode

data analysis, there is also a disagreement about 15% between the normalized Monte

Carlo events and anti-neutrino beam mode NOMAD data. To get a better agree-

ment, the Monte Carlo events was refitted. Through this refitting process, the new

normalization factors can be calculated and used to normalize the Monte Carlo events.
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Table 6.30: Reconstructed variable cut table after normalization and reweighted.

NCC
ν̄ NCC

ν NNC TotBkg NMC Ndata Ndata/NMC

Total 37718.5 12846.4 13049.0 50767.6 63613.9 189609 2.981
Pfermi<1.0 37404.5 12740.5 12939.0 50343.5 63084.1 189609 3.006
W2s>1.96(CCDIS) 32812.3 12175.0 12862 45674.3 57849.3 189609 3.278
FV cut 27076.9 10795.2 10953.7 38030.6 48825.8 103952 2.129
PhaseII 25286.1 9615.8 330.9 25617.0 35232.7 43627 1.238
Nmu=1 25199.1 9523.1 282.3 25481.4 35004.6 43257 1.236
veto/tube 25064.6 9495.8 281.0 25345.6 34841.4 41900 1.203
ncand>=2 23152.5 9287.8 278.6 23431.1 32718.9 38213 1.168
|~pµ|>2.5 23055.4 9235.7 267.6 23323.0 32558.7 38009 1.167
µ+ 22969.9 101.0 143.0 244.0 23213.9 27055 1.165
DeltaP/P<=0.2 22926.1 86.6 138.9 225.5 23151.7 26879 1.161
thetamupi<177.5 22923.4 86.6 138.9 225.5 23149.0 26545 1.147
Evis<300GeV 22922.4 86.6 138.9 225.5 23147.9 26479 1.144
Ehad<300GeV 22922.4 86.6 138.9 225.5 23147.9 26479 1.144
19512<Run<21270 22922.4 86.6 138.9 225.5 23147.9 26479 1.144
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To ensure the Monte Carlo events match the NOMAD data well, the same fitting

method as used in analysis of neutrino beam mode is also applied to anti-neutrino

mode. During this fitting process, two variables are used: Ybj and ν̂. The normal-

ization factors for ν̄µ charged current events, νµ charged current events and neutral

current events are kν̄µnorm, kνµCCnorm , and kNCnorm.

The procedure includes the following steps:

• Create the 2D distribution of Ybj, and ν̂;

• Divide the distribution into equal-populated 5 × 10 = 50 cubes. Because the

events do not distribute uniformly, the volumes of the cubes are not the same.

• Run through all the possible normalization,

– Set the default of kν̄µCCnorm at 1.15 and vary it in steps of 0.001 from 1.1 to

1.2;

– Set kNCnorm = 4.7 and vary it in steps of 0.001 from 4.6 to 4.8;

– Set kνµCCnorm = 0.1 and vary it in steps of 0.001 from 0.0 to 0.2;

Then the total number of Monte Carlo events after normalization becomes

NMC =NCC
ν̄µ × kν̄µCCnorm +

NNC × kNCnorm+

NCC
νµ × kνµCCnorm

• Calculate the χ2 for each cube and sum over all of them.

χ2 = (Ndata −NMC)2

σ2
data + σ2

MC
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While σdata =
√
Ndata, and σMC =

√∑
j(
√
NMC(j))2, index i represent the

Monte Carlo events (ν̄µCC, νµCC and NC);

• Get the parameter corresponding the minimum χ2.

kν̄µCCnorm = 1.114± 0.015

kNCnorm = 4.67

kνµCCnorm = 0.0

Since the total points I used for this 2D fit is equal to 50 and the minimum χ2

is 247.2, then the value χ2/DOF equals to 4.944.

The normalization factors got from this fit procedure will be used to calculated the

number of ν̄µ charged current in the anti-neutrino beam mode. Same method was

used in this anti-neutrino beam mode data analysis as in the neutrino beam mode

data analysis.

Table 6.31 shows the number of ν̄µ-CC events, background from charged current

events (CC-Bkg), background from neutral current events (NC-Bkg), total back-

ground (Tot-Bkg), total Monte Carlo events (Tot-MC), number of data (Ndata) after

all the cuts in 7 Evis bins without normalization (not multiply Norm factors I got

from the fit).

The first two columns of Table 6.33 show the generated and reconstructed ν̄µ

charged current events in 7 visible energy (Evis) bins. Analogous to the calculations

in the neutrino beam mode data analysis, the efficiency vector can also be calculated

from the ratio between the elements in these two columns (Reconstructed ν̄µ charged

current events divide by the Generated ν̄µ charged current events) which is shown in

the last column of Table 6.33.
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Table 6.31: Reconstructed ν̄µ charged current events without normalization.

Evis(GeV) NCC
ν̄µ generated NCC

ν̄µ constructed CC-Bkg NC-bkg Tot-Bkg NMC Ndata

2.5-8.0 1583.3 1168.5 0.8 6.5 7.3 1175.8 1042
8.0-15.0 8550.9 5598.0 3.6 18.3 22.0 5620.0 5165
15.0-20.0 6424.7 4016.0 3.9 14.7 18.7 4034.7 4039
20.0-30.0 7976.4 5038.1 10.2 25.0 35.1 5073.2 5891
30.0-50.0 5868.9 3988.4 21.0 35.8 56.9 4045.3 5262
50.0-100.0 3879.0 2652.2 29.3 31.4 60.7 2712.8 4024
100.0-300.0 716.8 461.3 17.7 7.2 24.9 486.1 1056
2.5-300.0 35000 22922.4 86.6 138.9 225.5 23147.9 26479

Table 6.32: Raw signal and fully corrected data after normalization.

Evis(GeV) ν̄µ-CC reconstructed normalized signal Raw signal Tot-Bkg NMC Ndata Ndata/NMC

2.5-8.0 1168.5 1301.7 1011.6 30.4 1332.1 1042 0.782
8.0-15.0 5598.0 6236.2 5079.5 85.5 6321.7 5165 0.817
15.0-20.0 4016.0 4473.8 3970.4 68.6 4542.4 4039 0.889
20.0-30.0 5038.1 5612.4 5774.2 116.8 5729.2 5891 1.028
30.0-50.0 3988.4 4443.1 5094.8 167.2 4610.3 5262 1.141
50.0-100.0 2652.2 2954.5 3877.4 146.6 3101.1 4024 1.298
100.0-300.0 461.3 513.8 1022.4 33.6 547.4 1056 1.929
2.5-300.0 22922.4 25535.5 25830.3 648.7 26184.2 26479 1.011

136



www.manaraa.com

Table 6.33: The efficiency (ratio between Rec-ν̄µ CC and Gen-ν̄µ CC events) in 7 Eν
bins.

Evis(GeV) Generated NCC
ν̄µ Reconstructed NCC

ν̄µ Efficiency
2.5-8.0 1583.3 1168.5 0.738
8.0-15.0 8550.9 5598.0 0.655
15.0-20.0 6424.7 4016.0 0.625
20.0-30.0 7976.4 5038.1 0.632
30.0-50.0 5868.9 3988.4 0.680
50.0-100.0 3879.0 2652.2 0.684
100.0-300.0 716.8 461.3 0.644
2.5-300.0 35000 22922.4 0.655

Table 6.32 shows the reconstructed ν̄µ, normalized signal, Raw signal which equals

to the number of data minus the total background, total background (Tot-Bkg), total

number of MC events (NMC) which equals to the sum of normalized signal and the

total background, number of data (Ndata). These numbers will be used to calculated

the fully corrected signal.

Table 6.34: Fully corrected signal get from efficiency vector (shown in Table 6.33).

Evis(GeV) Raw signal Efficiency Full Corrected Signal
2.5-8.0 1011.6 0.738 1370.7
8.0-15.0 5079.5 0.655 7755.0
15.0-20.0 3970.4 0.625 6352.6
20.0-30.0 5774.2 0.632 9136.4
30.0-50.0 5094.8 0.680 7492.4
50.0-100.0 3877.4 0.684 5668.7
100.0-300.0 1022.4 0.644 1587.6
2.5-300.0 25830.3 0.655 39435.6

Using the Raw signal in Table 6.32 divide by the efficiency in the same energy bin

shown in Table 6.33, we get the fully corrected signal which are shown in Table 6.34.
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Table 6.35: ν̄µ charged current events as a function of Eν (Evis) before normalization.

Eν \ Evis 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0 2.5-300.0
2.5-8.0 572.9 15.7 0.3 0.2 0.5 0.1 0.1 589.7
8.0-15.0 585.0 4214.1 74.0 7.2 3.5 1.8 1.0 4886.6
15.0-20.0 6.9 1288.5 2779.0 109.8 6.6 3.0 1.7 4195.5
20.0-30.0 2.6 72.5 1143.9 4214.7 116.3 8.4 4.9 5563.4
30.0-50.0 0.8 5.8 16.9 695.5 3485.1 86.7 5.8 4296.7
50.0-100.0 0.2 1.2 1.6 10.1 374.0 2445.2 52.1 2884.4
100.0-300.0 0.1 0.2 0.2 0.6 2.5 106.8 395.7 506.1
2.5-300.0 1168.5 5598.0 4016.0 5038.1 3988.5 2652 461.3 22922.4

Table 6.36: Background as a function of Eν and Evis before normalization.

Eν \ Evis 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0 2.5-300.0
2.5-8.0 0 0 0 0 0 0 0 0
8.0-15.0 1.9 1.1 0 0 0 0 0 3.0
15.0-20.0 0.9 2.5 0.4 0 0 0 0 3.8
20.0-30.0 1.7 4.7 3.3 2.3 0.2 0 0 12.2
30.0-50.0 1.2 5.4 5.8 9.5 7.3 0.1 0.1 29.4
50.0-100.0 0.7 3.9 4.1 9.9 19.0 12.4 0.3 50.2
100.0-300.0 0.3 0.7 1.2 3.2 9.3 18.8 6.8 40.2
2.5-300.0 6.7 18.3 14.8 24.9 35.8 31.3 7.2 139
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Table 6.37: Raw signal and fully corrected data after normalization.

Evis(GeV) ν̄µ-CC reconstructed normalized signal Raw signal Tot-Bkg NMC Ndata

2.5-8.0 1168.5 1301.7 1010.7 31.3 1333.0 1042
8.0-15.0 5598.0 6236.2 5079.5 85.5 6231.7 5165
15.0-20.0 4016.0 4473.8 3969.9 69.1 4542.9 4039
20.0-30.0 5038.1 5612.4 5774.7 116.3 5728.7 5891
30.0-50.0 3988.4 4443.1 5094.8 167.2 4610.3 5262
50.0-100.0 2652.2 2954.5 3877.8 146.2 3100.7 4024
100.0-300.0 461.3 513.8 1022.4 33.6 547.4 1056
2.5-300.0 22922.4 25535.5 25829.9 649.1 26184.6 26479
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Table 6.38: Fully corrected signal get from efficiency matrix.

Evis(GeV) Raw signal Efficiency Full Corrected Signal
2.5-8.0 1010.7 0.738 1369.5
8.0-15.0 5079.5 0.655 7755.0
15.0-20.0 3969.9 0.625 6351.8
20.0-30.0 5774.7 0.632 9137.2
30.0-50.0 5094.8 0.680 7492.4
50.0-100.0 3877.8 0.684 5669.3
100.0-300.0 1022.4 0.644 1587.6
2.5-300.0 25829.9 0.655 39435.0

Coherent π− in Anti-neutrino Mode

Table 6.39: Normalization of the MC events.

ν̄µ CC 35000
ν̄µ CC QE 782.0
ν̄µ CC RES 1042.7
ν̄µ CC DIS 33175.4
ν̄µ NC DIS 12250
ν̄µ cohPi 406.6
ν̄µ cohRho 244.0
νµ CC 13000
νµ QE generated 290.5
νµ RES generated 387.3
νµ CC DIS generated 12322.3
νµ NC DIS generated 4550

Total νµ-CC events with in Fiducial Volume is normalized to 13000 events; ν̄µ-

CC events equals to 35000 events; NC/CC equals to 0.35, non-Dis/Dis equals to

0.055;QE/RES equals to 0.75; Coh-π/QE equals to 2× 0.26; Coh-ρ/ Coh-π equals to

0.6.
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Table 6.40: Summary of event reduction in different data and MC samples for the preselection cuts.

NCC
ν̄µ NCC

νµ NNC Cohρ− TotBkg Cohπ− Ndata Ratio
Total 45462.8 14987.6 21038.9 282.6 81771.9 658.4 – –
Pfermi 45073.8 14859.9 20853.3 282.6 81069.6 658.4 – –
W2S 39409.3 14157.7 18721.1 282.6 72570.7 658.4 – –
Gen-FV 35012.3 13073.7 16851.4 250.9 65188.3 572.8 – –
Eπ>0.5(Coh only) 35012.3 13073.7 16851.4 250.9 65188.3 407.2 – –
2.5<Evis<300 35000.0 13000.0 16800 244.0 65044.0 406.6 – –
total 37718.5 12846.4 13049.0 242.3 63856.3 543.7 189609 2.94
pfermi 37404.5 12740.5 12939.0 242.3 63326.3 543.7 189609 2.96
W2 32812.3 12175.0 12862 242.3 58091.6 543.7 189609 3.24
Rec-Fidu 29244.2 11271.13 11651.2 214.8 52381.2 487.5 137286 2.60
Eπ>0.5(Coh only) 29244.2 11271.1 11651.1 196.4 52362.8 376.0 137286 2.60
Ph2mu 27325.2 10009.6 341.0 169.0 37844.8 365.3 48963 1.28
Tube/Veto 27153.4 9975.1 339.1 168.1 37635.6 363.2 46123 1.21
Ncand=2 4534.5 1035.5 17.2 136.6 5723.8 320.2 7065 1.17
µ+/Eµ 4529.3 2.8 10.0 135.1 4677.2 318.9 5519 1.10
Had- 2752.2 1.5 8.0 134.1 2895.8 316.8 3558 1.08
θµ+,π−<177.5 2750.2 1.5 8.0 134.1 2893.8 316.6 3293 1.03
Fit Matrix error 2732.3 1.3 8.0 133.0 2874.6 314.5 3230 1.01
Pπ>1.0 1045.7 1.0 5.2 124.2 1176.2 264.8 1542 1.07
θµ+,π−<0.5 740.4 0.8 5.0 123.6 869.9 254.9 1252 1.13
Pm
T <0.5 327.3 0.2 0.6 113.0 441.1 246.8 789 1.14

(pπ − pneu)/(pπ + pneu) > 0 257.9 0.1 0.3 64.6 323.0 246.3 651 1.14
nV0 cut 250.0 0.1 0.3 56.0 306.5 246.1 630 1.14
Nclu cut 216.0 0.1 0.2 25.3 241.5 240.0 531 1.10
mgg<0.5 216.0 0.1 0.2 25.3 241.5 240.0 531 1.10
19512<Run<21270 216.0 0.1 0.2 25.3 241.5 240.0 531 1.10
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Kinematic Analysis
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Figure 6.42: Pm
T distribution of the anti-neutrino beam mode data (negative focusing

data: FocN).

The distributions of missing transverse momentum Pm
T , the Bjorken variable Xbj,

the outgoing meson forwardness ζ are shown from Figure 6.42 to Figure 6.44. These

three variables were used during the neural network analysis.

Figure 6.47 shows the distribution of sensitivity (defined in Equation (6.7)) in

anti-neutrino beam mode. From this figure, we could see that, in the anti-neutrino

beam mode analysis, the best cut value for the signal is 0.8, however, to be consistent

with the event selection in the neutrino beam mode, we also chose 0.4 and 0.7 for

background and signal region.

Similar to the analysis of neutrino beam mode, in this anti-neutrino beam mode

analysis, some kinematic variable distributions after neural network are shown from

Figure 6.48 to Figure 6.67. It is obvious that there is also a good agreement between

Monte Carlo events and NOMAD data after the neural network analysis. Same to the
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Figure 6.43: Xbj distribution of the anti-neutrino beam mode data (negative focusing
data: FocN).
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Figure 6.44: ζ distribution of the anti-neutrino beam mode data (negative focusing
data: FocN).
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Figure 6.45: The NN distribution comparison of background and signal.
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Figure 6.46: The NN distribution comparison of Data and MC.
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Figure 6.47: The distribution of sensitivity of the neural network in coherent π−
analysis of anti-neutrino beam mode.

plots in neutrino beam mode, in these figures, "Dt" represents NOMAD data; "Total

MC" represents total Monte Carlo events; "Tot Bkg" represents total background

events; "ν̄ CC" represents ν̄µ charged current events; "ν CC" represents νµ charged

current events; "NC" represents the combination of ν̄µ and νµ neutral current events;

"Coh π−" represents the coherent π− events; which is also the signal in this analysis;

"Coh ρ−" represents the coherent ρ− events.

145



www.manaraa.com

bjY
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
v

e
n

ts

0

10

20

30

40

50

60
Dt

Total MC
­

πCoh 
Tot Bkg

­CCν

­CCν

NC
­

ρCoh 

Figure 6.48: The Ybj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.49: The Ybj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.50: The Xbj distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.51: The Xbj distribution from different contributions, ν-CC, ν̄-CC, NC,
ν̄-Cohρ− and Cohπ− in signal (>0.70) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.52: The ζπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.53: The ζπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data points
with error bars) and MC (histogram).
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Figure 6.54: The Q2 distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.55: The Q2 distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.56: The Pm
T distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.57: The Pm
T distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.58: The t distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.59: The t distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.60: The t′ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.61: The t′ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.62: The Eπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.63: The Eπ distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-
Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.64: The ΦPT
had distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in background (control) region and the Comparison between Data
(points with error bars) and MC (histogram).
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Figure 6.65: The ΦPT
had distribution from different contributions, ν-CC, ν̄-CC, NC, ν̄-

Cohρ− and Cohπ− in signal (>0.7) region and the Comparison between Data (points
with error bars) and MC (histogram).
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Figure 6.66: The angleθ between muon and pion distribution from different contri-
butions, ν-CC, ν̄-CC, NC, ν̄-Cohρ− and Cohπ− in background (control) region and
the Comparison between Data (points with error bars) and MC (histogram).
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Figure 6.67: The angle θ distribution from different contributions, ν-CC, ν̄-CC, NC,
ν̄-Cohρ− and Cohπ− in signal (>0.7) region and he Comparison between Data points
with error bars and MC (histogram).
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Table 6.41: The NN cut table (the beam(flux) reweight is applied to all the ν̄µ-CC
and νµ-CC events).

NN Tot-Bkg BN Norm-Bkg Data Raw Sig. Eff. Corr-Sig. (Err = Stat., BN)
0.4 76.6 1.19 91.5 311 219 0.533 411.5 ± 39.61 ± 19.29

0.41 74.4 1.2 89 306 217 0.531 408.7 ± 39.37 ± 18.82
0.42 72.9 1.2 87.2 304 217 0.529 410 ± 39.32 ± 18.51
0.43 71.2 1.2 85.1 301 216 0.527 409.9 ± 39.19 ± 18.14
0.44 69.1 1.19 82.4 300 218 0.524 415.1 ± 39.2 ± 17.69
0.45 68 1.19 81.1 300 219 0.522 419.6 ± 39.29 ± 17.5
0.46 66.2 1.19 78.9 297 218 0.519 420.3 ± 39.22 ± 17.14
0.47 64.9 1.19 77.4 294 217 0.516 419.9 ± 39.18 ± 16.9
0.48 63.8 1.19 76.1 291 215 0.513 418.9 ± 39.14 ± 16.7
0.49 63 1.19 75 290 215 0.51 421.8 ± 39.26 ± 16.59
0.5 60.3 1.19 71.7 289 217 0.506 429.5 ± 39.29 ± 16

0.51 59.2 1.19 70.3 286 216 0.503 429.2 ± 39.3 ± 15.81
0.52 58.2 1.19 69.1 285 216 0.498 433.5 ± 39.49 ± 15.69
0.53 56.6 1.19 67.2 281 214 0.494 433.2 ± 39.48 ± 15.4
0.54 54.8 1.19 65.1 275 210 0.488 430 ± 39.39 ± 15.06
0.55 52.7 1.19 62.9 265 202 0.483 418.8 ± 39.05 ± 14.67
0.56 50.6 1.2 60.6 254 193 0.476 406 ± 38.69 ± 14.27
0.57 47.9 1.2 57.4 245 188 0.469 399.7 ± 38.44 ± 13.71
0.58 44.3 1.19 52.9 244 191 0.461 415 ± 38.76 ± 12.92
0.59 42.1 1.19 50.3 238 188 0.453 414.5 ± 38.77 ± 12.48
0.6 40.1 1.2 47.9 230 182 0.445 408.8 ± 38.65 ± 12.08

0.61 38.4 1.2 46 224 178 0.439 405.7 ± 38.62 ± 11.75
0.62 36.6 1.2 43.9 217 173 0.432 400.5 ± 38.51 ± 11.38
0.63 35.2 1.2 42.2 211 169 0.425 397 ± 38.52 ± 11.12
0.64 33.7 1.2 40.5 203 162 0.419 387.6 ± 38.27 ± 10.78
0.65 32.5 1.21 39.2 196 157 0.412 380.3 ± 38.21 ± 10.58
0.66 31 1.21 37.4 191 154 0.406 378.7 ± 38.24 ± 10.27
0.67 29.5 1.2 35.5 189 154 0.399 385.1 ± 38.54 ± 9.929
0.68 28.6 1.2 34.4 186 152 0.392 386.5 ± 38.76 ± 9.771
0.69 27.2 1.2 32.8 183 150 0.385 389.7 ± 39.01 ± 9.492
0.7 26.3 1.21 31.7 175 143 0.379 378.4 ± 38.86 ± 9.335

0.71 25.2 1.21 30.4 172 142 0.372 380.9 ± 39.13 ± 9.112
0.72 24.2 1.2 29.2 169 140 0.365 382.7 ± 39.36 ± 8.896
0.73 22.9 1.2 27.5 167 139 0.358 389.1 ± 39.71 ± 8.574
0.74 21.3 1.2 25.7 161 135 0.351 385.3 ± 39.68 ± 8.158
0.75 20.2 1.2 24.3 157 133 0.344 385.7 ± 39.87 ± 7.873
0.76 18.9 1.2 22.8 153 130 0.336 387.3 ± 40.14 ± 7.56
0.77 18 1.2 21.6 150 128 0.328 391.7 ± 40.66 ± 7.373
0.78 16.6 1.2 19.9 146 126 0.319 394.6 ± 40.98 ± 6.979
0.79 15.7 1.2 18.8 143 124 0.311 399.8 ± 41.59 ± 6.793
0.8 14.8 1.2 17.8 139 121 0.301 402.3 ± 42.16 ± 6.611

0.81 13.4 1.2 16.1 131 115 0.292 393.7 ± 42.16 ± 6.188
0.82 12.8 1.2 15.4 126 111 0.282 392.2 ± 42.73 ± 6.099
0.83 11.6 1.2 14 122 108 0.271 399 ± 43.6 ± 5.773
0.84 10.9 1.2 13 117 104 0.259 401.9 ± 44.61 ± 5.653
0.85 10.3 1.2 12.3 110 97.7 0.247 395.4 ± 45.28 ± 5.577
0.86 9.44 1.2 11.3 104 92.7 0.234 395.3 ± 46.32 ± 5.409
0.87 8.21 1.2 9.83 98 88.2 0.22 401.1 ± 47.71 ± 5.012
0.88 7.34 1.2 8.83 88 79.2 0.203 389.5 ± 48.9 ± 4.853
0.89 6.8 1.2 8.16 82 73.8 0.186 396.5 ± 51.47 ± 4.904

Figure 6.68 shows a coherent π− event picture after all the kinematic cut and

neural network output cut of NOMAD events.
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Figure 6.68: Coherent π− event picture originated by ν̄µ contamination in the anti-neutrino mode.157
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Table 6.42: Kinematic information of a coherent π− event corresponding to Figure 6.68 survived from preselection and Neural
Network.

Neutrino Beam Mode
Run Event NN(lh) XVR YVR ZVR
20896 22826 0.621 -32 107 223
Pm
T ΦLH ΦmPtH Θµπ t ζ Xbj Ybj

0.204 167 71.9 0.124 0.0332 0.0363 0.0602 0.25
Ncand Nprim Nsecond Nvzero nhitmuon nhithad
2 2 0 0 47 15
particle E |P| Px Py Pz Θ Φ
Muon 27.3 27.3 0.397 -0.784 27.3 1.84 -63.2
Pion 8.59 8.59 -0.201 0.763 8.56 5.27 -75.3
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Determination of the Coherent π− Cross-section

Table 6.43: BN and SN table in 7 Bins, calculated from variable BN depends on the
Evis(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) BN SN δBN R×10−3(Stat.)
2.5-8.0 0.4263 0.37 0.2307 9.442 ± 6.266
8.0-15.0 1.056 0.7615 0.2013 13.680 ± 2.762
15.0-20.0 1.289 0.8975 0.3096 11.550 ± 2.674
20.0-30.0 1.373 0.926 0.3261 8.325 ± 1.939
30.0-50.0 1.333 1.337 0.4512 8.190 ± 2.017
50.0-100.0 2.131 1.742 1.102 6.144 ± 2.400
100.0-300.0 3.164 2.606 4.47 4.100 ± 4.915
2.5-8.0 1.202 0.9585 0.1343 9.883 ± 1.018

Table 6.44: BN, and δBN table, using a fixed BN(R=σ(Cohπ−)
σ(ν̄µCC) ).

Evis(GeV) BN SN δBN R×10−3(Stat.)
2.5-8.0 1.202 0.37 0.1343 5.186 ± 7.655
8.0-15.0 1.202 0.7615 0.1343 13.240 ± 2.787
15.0-20.0 1.202 0.8975 0.1343 11.710 ± 2.596
20.0-30.0 1.202 0.926 0.1343 8.584 ± 1.841
30.0-50.0 1.202 1.337 0.1343 8.343 ± 1.925
50.0-100.0 1.202 1.742 0.1343 6.903 ± 2.016
100.0-300.0 1.202 2.606 0.1343 5.160 ± 3.576
2.5-8.0 1.202 0.9585 0.1343 9.883 ± 1.018

Table 6.45: Signal in signal region, and Generated signal information calculated from
variable BN.

Evis(GeV) Sig-S Sig-Gen Efficiency
2.5 - 8.0 8.664 34.980 0.248
8.0 - 15.0 50.945 139.361 0.366
15.0 - 20.0 32.407 81.768 0.396
20.0 - 30.0 34.583 82.141 0.421
30.0 - 50.0 20.115 45.861 0.438
50.0 - 100.0 8.947 19.996 0.447
100.0 - 300.0 1.083 2.498 0.434
2.5 - 300.0 156.7 406.6 0.385
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Figure 6.69: The distribution of BN as a function of visible energy(Evis) in 7 bins
(the beam(flux) reweight is applied to all the ν̄µ-CC events).
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Table 6.46: Norm-bkg, Corr-sig as a function of Evis in 7 bins calculated from variable BN.

Evis Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 1.86 0.426 0.794 4 3.21 0.248 12.94 ± 8.411 ± 1.735
8.0 - 15.0 8.71 1.06 9.21 48 38.8 0.366 106.1 ± 20.87 ± 4.798
15.0 - 20.0 4.59 1.29 5.91 35 29.1 0.396 73.39 ± 16.61 ± 3.586
20.0 - 30.0 5.81 1.37 7.98 40 32 0.421 76.06 ± 17.13 ± 4.499
30.0 - 50.0 3.83 1.33 5.1 32 26.9 0.438 61.36 ± 14.59 ± 3.941
50.0 - 100.0 2.07 2.13 4.42 20 15.6 0.447 34.83 ± 12.61 ± 5.103
100.0 - 300.0 0.372 3.16 1.18 4 2.82 0.434 6.509 ± 6.795 ± 3.835
2.5 - 300.0 27.2 1.2 32.8 183 150 0.385 389.7 ± 39.01 ± 9.492
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Table 6.47: Corrected signal (Corr-Sig) as a function of Evis in 7 bins calculated
from variable BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 12.94 1370.7 9.442 ± 6.266
8 - 15 11.84 106.1 7755.0 13.680 ± 2.762
15 - 20 17.40 73.39 6352.6 11.550 ± 2.674
20 - 30 24.60 76.06 9136.4 8.325 ± 1.939
30 - 50 38.47 61.36 7492.4 8.190 ± 2.017
50 - 100 71.54 34.83 5668.7 6.144 ± 2.400
100 - 300 142.70 6.509 1587.6 4.100 ± 4.915
2.5 - 300 25.00 389.7 39435.6 9.883 ± 1.018

Table 6.48: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins calculated
from variable BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Eν <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 13.162 ± 8.164 1370.7 9.602 ± 5.956
8 - 15 11.84 106.167 ± 21.991 7755.0 13.690 ±2.836
15 - 20 17.40 74.131 ± 17.080 6352.6 11.669 ±2.689
20 - 30 24.60 76.719 ± 17.907 9136.4 8.397 ±1.960
30 - 50 38.47 60.443 ± 15.147 7492.4 8.067 ±2.022
50 - 100 71.54 34.634 ± 13.077 5668.7 6.110 ±2.307
100 - 300 142.70 5.943 ± 6.872 1587.6 3.743 ±4.329
2.5 - 300 25.00 389.7 ± 40.15 39435.6 9.883 ±1.018

Figure 6.70 and Figure 6.71 show the distributions of R=σ(Cohπ−)
σ(ν̄µCC) and R×E dis-

tributions in both linear scale and log scale, where R is calculated from variable

BN.

Table 6.49 and Table 6.50 show the results calculated using a fixed BN of anti-

neutrino beam mode data (Negative focusing data: FocN).
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Figure 6.70: R=σ(Cohπ−)
σ(ν̄µCC) distribution in both linear scale (top) and log scale (bot-

tom), calculated from variable BN which depends on the Evis (the beam(flux)
reweight is applied to all the ν̄µ-CC events).

163



www.manaraa.com

(GeV)νE
0 50 100 150 200 250 300

R
(C

o
h

P
iM

: 
F

o
cP

)*
<E

>

-200

0

200

400

600

800

1000

1200

(GeV)νE
10 210

R
(C

o
h

P
iM

: 
F

o
cP

)*
<E

>

-200

0

200

400

600

800

1000

1200

Figure 6.71: R×<E> distribution in both linear scale (top) and log scale (bottom),
calculated from variable BN which depends on the Evis (the beam(flux) reweight is
applied to all the ν̄µ-CC events).
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Table 6.49: Norm-bkg, Corr-sig as a function of Evis in 7 bins, calculated from a fixed BN.

Evis Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8 1.86 1.2 2.24 4 1.76 0.248 7.108 ± 10.44 ± 1.01
8 - 15 8.71 1.2 10.5 48 37.5 0.366 102.6 ± 21.37 ± 3.202
15 - 20 4.59 1.2 5.52 35 29.5 0.396 74.39 ± 16.42 ± 1.555
20 - 30 5.81 1.2 6.98 40 33 0.421 78.42 ± 16.72 ± 1.853
30 - 50 3.83 1.2 4.6 32 27.4 0.438 62.51 ± 14.38 ± 1.173
50 - 100 2.07 1.2 2.49 20 17.5 0.447 39.13 ± 11.41 ± 0.6221
100 - 300 0.372 1.2 0.447 4 3.55 0.434 8.192 ± 5.676 ± 0.1152
2.5 - 300 27.2 1.2 32.8 183 150 0.385 389.7 ± 39.01 ± 9.492
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Table 6.50: Corrected signal (Corr-sig) as a function of Evis in 7 bins, calculated
from a fixed BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 7.108 1370.7 5.186 ± 7.655
8 - 15 11.84 102.6 7755.0 13.240± 2.787
15 - 20 17.40 74.39 6352.6 11.710± 2.596
20 - 30 24.60 78.42 9136.4 8.584 ± 1.841
30 - 50 38.47 62.51 7492.4 8.343 ± 1.925
50 - 100 71.54 39.13 5668.7 6.903 ± 2.016
100 - 300 142.70 8.192 1587.6 5.160 ± 3.576
2.5 - 300 25.00 389.7 39435.6 9.883 ± 1.018

Table 6.51: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins, calculated
from a fixed BN(R=σ(Cohπ−)

σ(ν̄µCC) ).

Eν <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 7.745 ± 9.921 1370.7 5.650 ± 7.238
8 - 15 11.84 102.432 ± 22.304 7755.0 13.209 ± 2.876
15 - 20 17.40 75.069 ± 16.589 6352.6 11.817 ± 2.611
20 - 30 24.60 79.013 ± 17.020 9136.4 8.648 ± 1.863
30 - 50 38.47 61.795 ± 14.368 7492.4 8.248 ± 1.918
50 - 100 71.54 38.911 ± 11.736 5668.7 6.864 ± 2.070
100 - 300 142.70 7.436 ± 5.009 1587.6 4.684 ± 3.155
2.5 - 300 25.00 389.7 ± 40.15 39435.6 9.883 ± 1.018

Figure 6.72 and Figure 6.73 show the distributions of R=σ(Cohπ−)
σ(ν̄µCC) and R×E dis-

tributions while R is calculated from a fixed BN.

6.6 Comparison of Neutrino Mode and Anti-neutrino Mode

With the result of R in Neutrino Beam Mode and Anti-neutrino Beam Mode, we

could calculate the average value of <R>. We use <R−> to denote this average

value, "-" means this is the R of coherent π−. To explain how to calculate <R−>,

let’s take a simple example: for the variables A± δA and B ± δB, the average value

of C and δ C are calculated as:
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Figure 6.72: R=σ(Cohπ−)
σ(ν̄µCC) distribution in both linear scale (top) and log scale (bot-

tom), calculated from a fixed BN (the beam(flux) reweight is applied to all the ν̄µ-CC
events).
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Figure 6.73: R×<E> distribution in both linear scale (top) and log scale (bottom),
calculated from a fixed BN (the beam(flux) reweight is applied to all the ν̄µ-CC
events).
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C =
A
δA2 + B

δB2
1
δA2 + 1

δB2
(6.10)

δC =
√√√√ 1

1
δA2 + 1

δB2
(6.11)

Using Equation (6.10) and Equation (6.11), the averaged value of R(Cohπ−) in

neutrino beam mode (positive focusing data: FocP) and anti-neutrino beam mode

(negative focusing data: FocN) are calculated and shown in Table 6.52.

Table 6.52: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Evis using variable BN.)

Evis(GeV) R(Cohπ−: FocP) R(Cohπ−: FocN) <R>
2.5-8.0 14.520 ± 5.224 9.442 ± 6.266 12.438 ± 4.012
8.0-15.0 16.490 ± 3.333 13.68 ± 2.762 14.824 ± 2.127
15.0-20.0 7.851 ± 3.217 11.55 ± 2.674 10.039 ± 2.056
20.0-30.0 12.760 ± 2.608 8.325 ± 1.939 9.904 ± 1.556
30.0-50.0 7.362 ± 1.795 8.19 ± 2.017 7.728 ± 1.341
50.0-100.0 4.094 ± 1.668 6.144 ± 2.400 4.762 ± 1.370
100.0-300.0 3.894 ± 2.341 4.100 ± 4.915 3.932 ± 2.114
2.5-300.0 9.845 ± 1.047 9.883 ± 1.018 9.865 ± 0.730

Table 6.53: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Eν using variable BN.

Eν(GeV) R(Cohπ−: FocP) R(Cohπ−: FocN) <R>
2.5-8.0 14.385 ± 5.112 9.602 ± 5.956 12.356 ± 3.879
8.0-15.0 16.426 ± 3.432 13.690 ±2.836 14.800 ± 2.186
15.0-20.0 8.578 ± 3.221 11.669 ±2.689 10.400 ± 2.064
20.0-30.0 12.393 ± 2.587 8.397 ±1.960 9.854 ± 1.562
30.0-50.0 7.432 ± 1.834 8.067 ±2.022 7.719 ± 1.358
50.0-100.0 4.178 ± 1.699 6.110 ±2.307 4.857 ± 1.368
100.0-300.0 3.597 ± 2.137 3.743 ±4.329 3.626 ± 1.916
2.5-300.0 9.845 ± 1.047 9.883 ± 1.018 9.865 ± 0.730

Table 6.52 and Table 6.53 show the comparison of R(Cohπ−) in Neutrino Beam

Mode and Anti-neutrino Beam Mode in 7 bins before and after smearing matrix
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Figure 6.74: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Eν using variable BN.
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Figure 6.75: Distribution of the sum of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as
a function of Eν using variable BN.
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correction. From these two tables, it is obvious that in each bins, the R=σ(Cohπ−)
σ(ν̄µCC)

are similar in this two beam modes. There are overlap in each bins. In the whole

bin from 2.5 to 300 GeV, R=σ(Cohπ−)
σ(ν̄µCC) are very close to each other in this two beam

modes.

6.7 Comparison of Coherent π− and Coherent π+

With the average value of R(R=σ(Cohπ−)
σ(ν̄µCC) ), let’s compare the average value with the

result of coherent π+ which got by Xinchun Tian. In Table 6.54, it gives out that the

Table 6.54: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Evis using
variable BN.

Evis(GeV) R(Cohπ−) R(Cohπ+) R(Cohπ−) / R(Cohπ+)
2.5-8.0 12.438 ± 4.012 7.06 ± 1.02 1.762 ± 0.623
8.0-15.0 14.824 ± 2.127 7.23 ± 0.37 2.053 ± 0.313
15.0-20.0 10.039 ± 2.056 6.43 ± 0.36 1.561 ± 0.331
20.0-30.0 9.904 ± 1.556 5.39 ± 0.27 1.837 ± 0.303
30.0-50.0 7.728 ± 1.341 4.52 ± 0.24 1.710 ± 0.310
50.0-100.0 4.762 ± 1.370 3.08 ± 0.23 1.546 ± 0.460
100.0-300.0 3.932 ± 2.114 2.06 ± 0.31 1.909 ± 1.066
2.5-300.0 9.865 ± 0.730 4.86 ± 0.12 2.030 ± 0.158

ratio between R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) is 2.030 ± 0.158, which is consistent to

the theoratical prediction, because in NOMAD beam, the ratio between the number

of νµ and ν̄ν is 2:1.

Table 6.55 shows the comparison between R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) after smear-

ing matrix correction.
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Figure 6.76: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) using variable BN.
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Figure 6.77: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) using variable BN.
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Table 6.55: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and =σ(Cohπ+)

σ(νµCC) as a function of Eν using
variable BN.

Eν(GeV) R(Cohπ−) R(Cohπ+) R(Cohπ−) / R(Cohπ+)
2.5-8.0 12.356 ± 3.879 5.99 ± 1.01 2.063 ± 0.735
8.0-15.0 14.800 ± 2.186 6.93 ± 0.37 2.136 ± 0.335
15.0-20.0 10.400 ± 2.064 6.39 ± 0.35 1.628 ± 0.335
20.0-30.0 9.854 ± 1.562 5.56 ± 0.26 1.772 ± 0.293
30.0-50.0 7.719 ± 1.358 4.61 ± 0.23 1.674 ± 0.306
50.0-100.0 4.857 ± 1.368 3.16 ± 0.22 1.537 ± 0.446
100.0-300.0 3.626 ± 1.916 2.25 ± 0.28 1.612 ± 0.875
2.5-300.0 9.865 ± 0.730 4.86 ± 0.12 2.030 ± 0.158

6.8 Systematic Uncertainties

Background Subtraction Procedure

In the procedure of the normalization of background, there are two methods have

been used. One is to normalize the background bin by bin with variable normalization

factor. The other one is to normalize the background by the normalization factor of

the whole bin from 2.5 to 300 GeV. From this subsection, we would give out the

result of analysis using a single background normalization factor. The difference

between these two ways of normalization of background is considered as a systematic

uncertainty which is shown in Table 6.61. In Table 6.61, δR equals to the R calculated

from a fixed BN minus the R calculated from variable BN. δR
R

equals δR divide by the

R calculated from a fixed BN.

Table 6.56 shows the comparison of R=σ(Cohπ−)
σ(ν̄µCC) in neutrino beam mode and anti-

neutrino beam mode calculated from a single background normalization.

The averaged value of R=σ(Cohπ−)
σ(ν̄µCC) in neutrino beam mode and anti-neutrino beam

mode are calculated by the Equation (6.10) and Equation (6.11), and are shown in

Table 6.57.
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Figure 6.78: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN calculated from
a fixed BN.
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Figure 6.79: Distribution of the sum of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN
calculated from a fixed BN.
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Figure 6.80: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) calculated from a fixed BN.
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Figure 6.81: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) calculated from a fixed BN.
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Table 6.56: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN calculated from
a fixed BN.

Eν(GeV) R(Cohπ−: FocP) R(Cohπ−: FocN) <R>
2.5-8.0 13.656± 5.143 5.650± 7.238 10.97 ± 4.192
8.0-15.0 16.321± 3.420 13.209± 2.876 14.498 ± 2.201
15.0-20.0 9.136± 2.991 11.817± 2.611 10.658 ± 1.967
20.0-30.0 12.254± 2.562 8.648± 1.863 9.895 ± 1.507
30.0-50.0 7.252± 1.806 8.248± 1.918 7.720 ± 1.315
50.0-100.0 4.778± 1.451 6.864± 2.070 5.465 ± 1.188
100.0-300.0 3.373± 2.087 4.684± 3.155 3.772 ± 1.741
2.5-300 9.845± 1.047 9.883± 1.018 9.865 ± 0.730

Table 6.57: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) calculated from a fixed BN.

Eν(GeV) R(Cohπ−) R(Cohπ+) R(Cohπ−)/R(Cohπ+)
2.5-8.0 10.970 ± 4.192 5.809±1.01 1.888± 0.793
8.0-15.0 14.498 ± 2.201 7.002±0.37 2.071± 0.333
15.0-20.0 10.658 ± 1.967 6.405±0.35 1.664± 0.320
20.0-30.0 9.895 ± 1.507 5.599±0.26 1.767± 0.281
30.0-50.0 7.720 ± 1.315 4.582±0.23 1.685± 0.299
50.0-100.0 5.465 ± 1.188 3.156±0.22 1.732± 0.395
100.0-300.0 3.772 ± 1.741 2.208±0.28 1.708± 0.817
2.5-300.0 9.865 ± 0.730 4.86± 0.12 2.030± 0.158
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Systematics on Background Subtractions

Distribution of R of Coherent !- Events with the background calibrated from a 
fixed normalization factor and a variable normalization factor.

<R
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Figure 6.82: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) calculated from a fixed BN to R=σ(Cohπ−)

σ(ν̄µCC)
calculated from variable BN.
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Table 6.58: Comparison between different background subtractions.

Eν(GeV) FixBN(ν-Mode) VarBN(ν-Mode) FixBN(ν̄-Mode) VarBN(ν̄-Mode) <R>(ν-Mode) <R>(ν̄-Mode)
2.5-8 13.656±5.143 14.385±5.112 5.650±7.238 9.652±5.956 10.97±4.192 12.356±3.879
8-15 16.321±3.420 16.426±3.432 13.209±2.876 13.690±2.836 14.498±2.201 14.800±2.186
15-20 9.136±2.991 8.578±3.221 11.817±2.611 11.669±2.689 10.658±1.967 10.400±2.064
20-30 12.254±2.562 12.393±2.587 8.648±1.863 8.397±1.960 9.895±1.507 9.854±1.562
30-50 7.252±1.806 7.432±1.834 8.248±1.918 8.067±2.022 7.720±1.315 7.719±1.358
50-100 4.778±1.451 4.178±1.699 6.864±2.070 6.110±2.307 5.465±1.188 4.857±1.386
100-300 3.373±2.087 3.597±2.137 4.684±3.155 3.743±4.329 3.772±1.741 3.626±1.916
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Smearing matrix for Cohπ−:FocP

Table 6.59: Smearing matrix of Cohπ−:FocP

Evis\ Eν 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0
2.5-8.0 28.68 1.09 0.01 0 0 0 0
8.0-15.0 1.06 56.72 1.45 0.02 0 0 0
15.0-20.0 0 1.51 28.31 1.25 0 0 0
20.0-30.0 0 0 1.55 37.55 1.34 0 0
30.0-50.0 0 0 0.01 1.43 36.44 1.03 0
50.0-100.0 0 0 0 0 1.11 20.96 0.23
100.0-300.0 0 0 0 0 0 0.35 2.86

Smearing matrix for Cohπ−:FocN

Table 6.60: Smearing matrix of Cohπ−:FocN

Evis\ Eν 2.5-8.0 8.0-15.0 15.0-20.0 20.0-30.0 30.0-50.0 50.0-100.0 100.0-300.0
2.5-8.0 12.98 0.93 0 0 0 0 0
8.0-15.0 1.09 76.38 2.28 0.02 0 0 0
15.0-20.0 0.01 2.33 45.38 2.48 0.01 0 0
20.0-30.0 0 0.03 1.76 48.52 1.63 0 0
30.0-50.0 0 0 0 1.13 28.01 0 0
50.0-100.0 0 0 0 0 0.58 12.02 0.22
100.0-300.0 0 0 0 0 0 0.12 1.37
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Table 6.61: Systematic on Background Subtraction.

Eν(GeV) δR-ν mode δR
R
-ν mode δR-ν̄ mode δR

R
-ν̄ mode

2.5-8 -0.729 -0.053 -4.002 -0.708
8-15 -0.105 -0.006 -0.481 -0.036
15-20 0.558 0.061 0.148 0.013
20-30 -0.139 -0.011 0.251 0.029
30-50 -0.18 -0.025 0.181 0.022
50-100 0.6 0.126 0.754 0.109
100-300 -0.224 -0.066 0.941 0.201

Systematic from Final State Interaction

Another very important systematic uncertainty comes from the final state interaction,

when the mesons are produced within the nucleus and interact with the nucleons.

Coherent process is not sensitive to the final state interactions, because the pion in

the final state does not emerge from the nucleons. However final state interactions

are affecting the background processes as well as the ν̄µ charged current events and

νµ charged current events. Therefore, we used NUANCE event generator to estimate

such effect by turning on/off the final state interaction(FSI) effect. Table 6.62 shows

the final state interaction error as a function of energy in 14 bins of coherent π+ in

neutrino beam mode analysis.

Use of Different Signal Models

In this analysis, the Rein-Sehgal(RS) Model [44] is used to simulate the Coherent π−

interaction in NOMAD detector. The RS model used by both NUANCE and NEU-

GEN, describes the weak current only in terms of the pion field; The Q2 dependence

of the cross-section is assumed to have a dipole form. Other calculations reply on

meson-dominance models [15] which include the dominant contributions from the ρ

and a1 mesons, for example, Berger-Sehgal(BS) Model [15]. The Monte Carlo Coher-

184



www.manaraa.com

Table 6.62: Final state interaction (FSI) error as a function of energy in 14 bins

Evis(GeV) FSI
2.5-6.0 6.5051
6.0-8.0 10.5073
8.0-10.0 6.4971
10.0-12.0 4.6806
12.0-15.0 3.9991
15.0-20.0 4.5252
20.0-25.0 2.4506
25.0-30.0 2.3983
30.0-40.0 1.7477
40.0-50.0 1.6448
50.0-70.0 0.7053
70.0-100.0 -2.8253
100.0-130.0 -7.0350
130.0-300.0 17.7462
2.5-300.0 3.7120

ent π− events used above are simulated by RS Model. As a check, the BS Model is

also used to simulate the coherent π− interactions. In this section, we will give out

the result of the analysis using the coherent π− events simulated by the BS Model and

compared it with the result of the RS Model. Because the momentum of the hadron

in BS model is lower than in the RS model, the efficiency is lower. Thus, according

to the theory, the corrected signal of BS Model should be more than the corrected

signal in RS model. The difference between the result of BS and RS model is also

considered as systematic uncertainty shown in Table 6.80. In Table 6.80, δR equals

to the R calculated from analysis with RS model simulation minus the R calculated

from analysis with BS model simulation. δR
R

equals δR divide by the R calculated

from analysis with RS model simulation.

Similar to the analysis with the coherent π− events simulated using the Rein-

Sehgal (RS) model, the coherent π− events simulated using the Berger-Sehgal (BS)

Model are used in the analysis of neutrino beam mode data and anti-neutrino beam

mode data. In this section, the results of the analysis with the coherent π− events
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simulated using BS model are given out and compared with the result of analysis

with the coherent π− events simulated using the RS model.

Neutrino Beam Mode Analysis:

Table 6.63 and Table 6.64 show the result of background and signal normalization

factors (BN and SN) calculated from variable BN and fixed BN.

Table 6.63: BN and SN table in 7 Bins using variable BN depends on the Evis in 7
bins.

Evis(GeV) BN SN δBN R ×10−3(Stat.)
2.5 - 8 0.8302 0.5041 0.2787 14 ± 6.215
8 - 15 0.7921 1.08 0.2023 22.09 ± 4.389
15 - 20 1.354 0.7222 0.4074 11.2 ± 4.198
20 - 30 0.8784 1.236 0.3057 15.14 ± 3.199
30 - 50 0.8652 0.9873 0.2973 8.492 ± 2.17
50 - 100 1.85 0.9401 0.7219 4.556 ± 2.135
100 - 300 0.6892 1.756 1.561 3.639 ± 2.803
2.5 - 300 0.9848 0.9612 0.1266 11.97 ± 1.324

Table 6.64: BN and SN table in 7 Bins using a fixed BN.

Evis(GeV) BN SN δBN R ×10−3(Stat.)
2.5 - 8 0.9848 0.5041 0.1266 13.1 ± 6.253
8 - 15 0.9848 1.08 0.1266 21.22 ± 4.443
15 - 20 0.9848 0.7222 0.1266 12.12 ± 3.85
20 - 30 0.9848 1.236 0.1266 14.91 ± 3.177
30 - 50 0.9848 0.9873 0.1266 8.265 ± 2.145
50 - 100 0.9848 0.9401 0.1266 5.53 ± 1.708
100 - 300 0.9848 1.756 0.1266 3.412 ± 2.634
2.5 - 300 0.9848 0.9612 0.1266 11.97 ± 1.324
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Table 6.65: Norm-bkg, Corr-sig as a function of Evis in 7 bins using variable BN.

Evis(GeV) Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 3.72 0.83 3.09 12 8.91 0.153 58.37 ± 25 ± 6.791
8.0 - 15.0 7.06 0.792 5.59 40 34.4 0.275 125 ± 24.3 ± 5.192
15.0 - 20.0 2.93 1.35 3.96 17 13 0.32 40.68 ± 14.79 ± 3.724
20.0 - 30.0 4.17 0.878 3.66 33 29.3 0.33 89.03 ± 18.41 ± 3.867
30.0 - 50.0 5.05 0.865 4.37 27 22.6 0.349 64.75 ± 15.98 ± 4.299
50.0 - 100.0 3.05 1.85 5.65 18 12.4 0.346 35.7 ± 15.47 ± 6.365
100.0 - 300.0 0.554 0.689 0.382 3 2.62 0.278 9.434 ± 6.563 ± 3.117
2.5 - 300.0 26.5 0.985 26.1 150 124 0.275 450.6 ± 48.34 ± 12.23
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The total background (Tot-bkg), background normalization (BN), normalized

background (Norm-bkg), Data, raw signal(Raw-sig), Efficiency (Eff), corrected signal

(Corr-Sig) of the analysis using BS model are shown in Table 6.65. The total num-

ber corrected signal in the whole bin from 2.5 to 300 GeV is 450.6±49.86, which is

bigger than the total number of corrected signal in the result of RS model which is

370.6±38.26±9.509.

Table 6.66: Corrected signal (Corr-Sig) as a function of Evis in 7 bins using variable
BN.

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 58.37 4168.3 14 ± 6.215
8 - 15 11.84 125 5660.2 22.09 ± 4.389
15 - 20 17.40 40.68 3633.3 11.2 ± 4.198
20 - 30 24.60 89.03 5881.0 15.14 ± 3.199
30 - 50 38.47 64.75 7625.0 8.492 ± 2.17
50 - 100 71.54 35.7 7835.2 4.556 ± 2.135
100 - 300 142.70 9.434 2592.0 3.639 ± 2.803
2.5 - 300 25.00 450.6 37645.6 11.97 ± 1.324

Table 6.67: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins using
variable BN.

Eν(GeV) <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 58.31 4168.3 14± 6.079
8 - 15 11.84 124.3 5660.2 21.96± 4.523
15 - 20 17.40 42.76 3633.3 11.77± 4.129
20 - 30 24.60 87.30 5881.0 14.84± 3.210
30 - 50 38.47 65.32 7625.0 8.567± 2.222
50 - 100 71.54 36.51 7835.2 4.660± 2.186
100 - 300 142.70 8.558 2592.0 3.301± 2.493
2.5 - 300 25.00 450.6 37645.6 11.97± 1.324
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Table 6.68: Norm-bkg, Corr-sig as a function of Evis in 7 bins using a fixed BN(the the beam(flux) reweight is applied to both
of the ν̄µ-CC events and νµ-CC events).

Evis(GeV) Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 3.72 0.985 3.66 12 8.34 0.153 54.61 ± 25.88 ± 3.085
8.0 - 15.0 7.06 0.985 6.95 40 33 0.275 120.1 ± 24.94 ± 3.248
15.0 - 20.0 2.93 0.985 2.88 17 14.1 0.32 44.05 ± 13.94 ± 1.157
20.0 - 30.0 4.17 0.985 4.11 33 28.9 0.33 87.68 ± 18.61 ± 1.601
30.0 - 50.0 5.05 0.985 4.98 27 22 0.349 63.02 ± 16.26 ± 1.831
50.0 - 100.0 3.05 0.985 3.01 18 15 0.346 43.33 ± 13.33 ± 1.116
100.0 - 300.0 0.554 0.985 0.546 3 2.45 0.278 8.844 ± 6.823 ± 0.2527
2.5 - 300.0 26.5 0.985 26.1 150 124 0.275 450.6 ± 48.34 ± 12.23
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Table 6.68 shows the result of total background (Tot-bkg), background normaliza-

tion (BN), normalized background (Norm-bkg), Data, raw signal (Raw-sig), Efficiency

(Eff), and corrected signal (Corr-Sig) which are calculated using a single background

normalization.

Table 6.69: Corrected signal (Corr-Sig) as a function of Evis in 7 bins using a fixed
BN.

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 54.61 4168.3 13.1 ± 6.253
8 - 15 11.84 120.1 5660.2 21.22 ± 4.443
15 - 20 17.40 44.05 3633.3 12.12 ± 3.85
20 - 30 24.60 87.68 5881.0 14.91 ± 3.177
30 - 50 38.47 63.02 7625.0 8.265 ± 2.145
50 - 100 71.54 43.33 7835.2 5.53 ± 1.708
100 - 300 142.70 8.844 2592.0 3.412 ± 2.634
2.5 - 300 25.00 450.6 37645.6 11.97 ± 1.324

Table 6.70: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins using a
fixed BN.

Eν(GeV) <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 54.60 4168.3 13.10 ±6.116
8 - 15 11.84 119.53 5660.2 21.12 ±4.565
15 - 20 17.40 45.64 3633.3 12.562±3.816
20 - 30 24.60 86.13 5881.0 14.645±3.178
30 - 50 38.47 64.05 7625.0 8.4 ±2.177
50 - 100 71.54 43.53 7835.2 5.556 ±1.778
100 - 300 142.70 8.14 2592.0 3.14 ±2.332
2.5 - 300 25.00 450.6 37645.6 11.97 ±1.324
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Anti-neutrino Beam Mode Analysis:

Table 6.71: BN and SN table in 7 Bins using variable BN depends on the Evis in 7
bins.

Evis(GeV) BN SN δBN R ×10−3(Stat.)
2.5 - 8.0 0.3439 0.2867 0.1952 8.538 ± 6.822
8.0 - 15.0 1.055 0.8238 0.1975 16.42 ± 3.478
15.0 - 20.0 1.24 0.9688 0.2968 13.77 ± 3.141
20.0 - 30.0 1.283 0.9928 0.3057 10.12 ± 2.333
30.0 - 50.0 1.479 1.35 0.4713 9.046 ± 2.372
50.0 - 100.0 2.006 1.759 1.039 6.767 ± 2.685
100.0 - 300.0 1.727 2.658 3.158 4.309 ± 4.224
2.5 - 300.0 1.17 1.009 0.1294 11.6 ± 1.226

Table 6.72: BN and SN table in 7 Bins using a fixed BN.

Evis(GeV) BN SN δBN R ×10−3(Stat.)
2.5 - 8.0 1.17 0.2867 0.1294 2.363 ± 8.942
8.0 - 15.0 1.17 0.8238 0.1294 15.97 ± 3.494
15.0 - 20.0 1.17 0.9688 0.1294 13.91 ± 3.064
20.0 - 30.0 1.17 0.9928 0.1294 10.33 ± 2.236
30.0 - 50.0 1.17 1.35 0.1294 9.474 ± 2.199
50.0 - 100.0 1.17 1.759 0.1294 7.597 ± 2.24
100.0 - 300.0 1.17 2.658 0.1294 4.655 ± 3.52
2.5 - 300.0 1.17 1.009 0.1294 11.6 ± 1.226
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Table 6.73: Norm-bkg, Corr-sig as a function of Evis in 7 bins using variable BN.

Evis(GeV) Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 2.02 0.344 0.694 3 2.31 0.197 11.7 ± 9.351
8.0 - 15.0 8.64 1.05 9.12 45 35.9 0.282 127.4 ± 26.97
15.0 - 20.0 4.33 1.24 5.37 34 28.6 0.327 87.46 ± 19.95
20.0 - 30.0 5.91 1.28 7.58 39 31.4 0.34 92.43 ± 21.32
30.0 - 50.0 3.87 1.48 5.73 31 25.3 0.373 67.77 ± 17.77
50.0 - 100.0 2.15 2.01 4.32 19 14.7 0.383 38.36 ± 15.22
100.0 - 300.0 0.346 1.73 0.597 3 2.4 0.351 6.841 ± 6.706
2.5 - 300.0 27.3 1.17 31.9 174 142 0.31 457.6 ± 48.36
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The total background (Tot-bkg), background normalization (BN), normalized

background (Norm-bkg), Data, raw signal (Raw-sig), Efficiency (Eff), corrected sig-

nal (Corr-Sig) of the analysis using BS model are shown in Table 6.46. The total

number corrected signal in the whole bin from 2.5 to 300 GeV is 457.6±48.36, which

is bigger than the total number of corrected signal in the result of RS model which

is 389.7±39.01±9.492.

Table 6.74: Corrected signal (Corr-sig) as a function of Evis in 7 bins using variable
BN.

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 11.7 1370.7 8.538 ± 6.822
8 - 15 11.84 127.4 7755.0 16.42 ± 3.478
15 - 20 17.40 87.46 6352.6 13.77 ± 3.141
20 - 30 24.60 92.43 9136.4 10.12 ± 2.333
30 - 50 38.47 67.77 7492.4 9.046 ± 2.372
50 - 100 71.54 38.36 5668.7 6.767 ± 2.685
100 - 300 142.70 6.841 1587.6 4.309 ± 4.224
2.5 - 300 25.00 457.6 39435.6 11.6 ± 1.226

Table 6.75: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins using
variable BN.

Eν(GeV) <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 12.2 1370.7 8.899 ± 6.476
8 - 15 11.84 127.5 7755.0 16.44 ± 3.565
15 - 20 17.40 87.20 6352.6 13.73 ± 3.124
20 - 30 24.60 93.89 9136.4 10.28 ± 2.383
30 - 50 38.47 66.77 7492.4 8.911 ± 2.367
50 - 100 71.54 38.28 5668.7 6.753 ± 2.768
100 - 300 142.70 6.079 1587.6 3.829 ± 3.606
2.5 - 300 25.00 457.6 39435.6 11.6 ± 1.226
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Table 6.76: Norm-bkg, Corr-sig as a function of Evis in 7 bins using a fixed BN.

Evis(GeV) Tot-bkg BN Norm-bkg Data Raw-sig Eff Corr-Sig. (Err=Stat., BN)
2.5 - 8.0 2.02 1.17 2.36 3 0.638 0.197 3.239 ± 12.26
8.0 - 15.0 8.64 1.17 10.1 45 34.9 0.282 123.8 ± 27.09
15.0 - 20.0 4.33 1.17 5.06 34 28.9 0.327 88.38 ± 19.47
20.0 - 30.0 5.91 1.17 6.91 39 32.1 0.34 94.4 ± 20.43
30.0 - 50.0 3.87 1.17 4.53 31 26.5 0.373 70.98 ± 16.48
50.0 - 100.0 2.15 1.17 2.52 19 16.5 0.383 43.07 ± 12.7
100.0 - 300.0 0.346 1.17 0.405 3 2.6 0.351 7.39 ± 5.588
2.5 - 300.0 27.3 1.17 31.9 174 142 0.31 457.6 ± 48.36
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Table 6.77: Corrected signal (Corr-sig) as a function of Evis in 7 bins using a fixed
BN.

Evis(GeV) <E> Corr-Sig ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 3.239 1370.7 2.363 ± 8.942
8 - 15 11.84 123.8 7755.0 15.97 ± 3.494
15 - 20 17.40 88.38 6352.6 13.91 ± 3.064
20 - 30 24.60 94.4 9136.4 10.33 ± 2.236
30 - 50 38.47 70.98 7492.4 9.474 ± 2.199
50 - 100 71.54 43.07 5668.7 7.597 ± 2.24
100 - 300 142.70 7.39 1587.6 4.655 ± 3.52
2.5 - 300 25.00 457.6 39435.6 11.6 ± 1.226

Table 6.78: Corrected signal (Corr-Sig-Enus) as a function of Eν in 7 bins using a
fixed BN.

Eν(GeV) <E> Corr-Sig-Enus ν̄µ-CC R ×10−3(Stat.)
2.5 - 8 6.25 4.407 1370.7 3.215 ± 8.418
8 - 15 11.84 123.5 7755.0 15.93 ± 3.609
15 - 20 17.40 88.03 6352.6 13.86 ± 3.049
20 - 30 24.60 96.00 9136.4 10.51 ± 2.281
30 - 50 38.47 70.04 7492.4 9.348 ± 2.186
50 - 100 71.54 42.83 5668.7 7.556 ± 2.314
100 - 300 142.70 6.584 1587.6 4.147 ± 3.005
2.5 - 300 25.00 457.6 39435.6 11.6 ± 1.226
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Table 6.79: Comparison between RS and BS signal model simulation.

Eν(GeV) RS(ν-mode) BS(ν-mode) RS(ν̄-mode) BS(ν̄-mode) <R>(RS) <R>(BS)
2.5-8 13.656±5.143 13.100±6.116 5.650±7.238 3.215±8.418 10.97± 4.192 9.685±4.948
8-15 16.321±3.420 21.12±4.565 13.209±2.876 15.930±3.609 14.498±2.201 17.926±2.831
15-20 9.136±2.991 12.562±3.816 11.817±2.611 13.86±3.049 10.658±1.967 13.354±2.382
20-30 12.254±2.562 14.645±3.178 8.648±1.863 10.510±2.281 9.895±1.507 11.916±1.853
30-50 7.252±1.806 8.400±2.177 8.248±1.918 9.348±2.183 7.720±1.315 8.872±1.543
50-100 4.778±1.451 5.556±1.778 6.864±2.070 7.556±2.314 5.465±1.188 6.298±1.410
100-300 3.373±2.087 3.140±2.332 4.684±3.155 4.147±3.005 3.772±1.741 3.519±1.842
2.5-300 9.845±1.047 11.97±1.324 9.883±1.018 11.6±1.226 9.865±0.730 11.771±0.9
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Table 6.80: Systematic on signal modeling.

Eν(GeV) δR-ν mode δR
R
-ν mode δR-ν̄ mode δR

R
-ν̄ mode

2.5-8 0.556 0.041 2.435 0.431
8-15 -4.799 -0.293 -2.721 -0.206
15-20 -3.426 -0.375 -2.043 -0.173
20-30 -2.391 -0.195 -1.862 -0.215
30-50 -1.148 -0.158 -1.1 -0.133
50-100 -0.768 -0.161 -0.692 -0.101
100-300 0.233 0.069 0.537 0.115
2.5-300 -2.125 -0.216 -1.717 -0.174

E!(GeV)

Systematics on Signal Modeling

Distribution of R of Coherent !- Events in NOMAD (coherent !- in MC 
simulated by RS and BS Model).

<R
>"

10
-3

Figure 6.83: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) between BS and RS Model calculated from

a fixed BN.
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Table 6.81: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Evis using variable BN.

Evis(GeV) R(Cohπ−:FocP) R(Cohπ−:FocN) <R>
2.5 - 8.0 14 ± 6.215 8.538 ± 6.822 11.523 ± 4.594
8.0 - 15.0 22.09 ±4.389 16.42 ± 3.478 18.607 ± 2.726
15.0 - 20.0 11.2 ±4.198 13.77 ± 3.141 12.848 ± 2.515
20.0 - 30.0 15.14 ±3.199 10.12 ± 2.333 11.863 ± 1.885
30.0 - 50.0 8.492 ±2.17 9.046 ± 2.372 8.744 ± 1.601
50.0 - 100.0 4.556 ±2.135 6.767 ± 2.685 5.412 ± 1.671
100.0 - 300.0 3.639 ±2.803 4.309 ± 4.224 3.844 ± 2.336
2.5 - 300.0 11.97 ±1.324 11.6 ± 1.226 11.771 ± 0.900

Table 6.82: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Eν using variable BN.

Eν(GeV) R(Cohπ−:FocP) R(Cohπ−:FocN) <R>
2.5 - 8.0 14 ± 6.079 8.899 ± 6.476 11.611 ±4.432
8.0 - 15.0 21.96± 4.523 16.44 ± 3.565 18.555 ±2.800
15.0 - 20.0 11.77± 4.129 13.73 ± 3.124 13.017 ±2.491
20.0 - 30.0 14.84± 3.210 10.28 ± 2.383 11.900 ±1.913
30.0 - 50.0 8.567± 2.222 8.911 ± 2.367 8.728 ±1.620
50.0 - 100.0 4.660± 2.186 6.753 ± 2.768 5.464 ±1.716
100.0 - 300.0 3.301± 2.493 3.829 ± 3.606 3.472 ±2.051
2.5 - 300.0 11.97± 1.324 11.6 ± 1.226 11.771 ±0.900

Table 6.83: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Evis calculated from a fixed BN.

Evis(GeV) R(Cohπ−:FocP) R(Cohπ−:FocN) <R>
2.5 - 8.0 13.1 ± 6.253 2.363 ± 8.942 9.574 ±5.124
8.0 - 15.0 21.22± 4.443 15.97 ± 3.494 17.976 ±2.746
15.0 - 20.0 12.12± 3.85 13.91 ± 3.064 13.216 ±2.397
20.0 - 30.0 14.91± 3.177 10.33 ± 2.236 11.847 ±1.829
30.0 - 50.0 8.265± 2.145 9.474 ± 2.199 8.854 ±1.535
50.0 - 100.0 5.53 ± 1.708 7.597 ± 2.24 6.290 ±1.358
100.0 - 300.0 3.412± 2.634 4.655 ± 3.52 3.858 ±2.109
2.5 - 300.0 11.97± 1.324 11.6 ± 1.226 11.771 ±0.900
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Figure 6.84: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν using
variable BN.
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Figure 6.85: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν calcu-
lated from a fixed BN.
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Figure 6.86: Ratio between R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν using
variable BN.
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Figure 6.87: Ratio between of R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν
calculated from a fixed BN.
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Table 6.84: Comparison of R=σ(Cohπ−)
σ(ν̄µCC) :FocP and R=σ(Cohπ−)

σ(ν̄µCC) :FocN as a function of
Eν calculated from a fixed BN.

Eν(GeV) R(Cohπ−:FocP) R(Cohπ−:FocN) <R>
2.5 - 8.0 13.10 ± 6.116 3.215 ± 8.418 9.685 ±4.948
8.0 - 15.0 21.12 ± 4.565 15.93 ± 3.609 17.926 ±2.831
15.0 - 20.0 12.562± 3.816 13.86 ± 3.049 13.354 ±2.382
20.0 - 30.0 14.645± 3.178 10.51 ± 2.281 11.916 ±1.853
30.0 - 50.0 8.4 ± 2.177 9.348 ± 2.186 8.872 ±1.543
50.0 - 100.0 5.556 ± 1.778 7.556 ± 2.314 6.298 ±1.410
100.0 - 300.0 3.14 ± 2.332 4.147 ± 3.005 3.519 ±1.842
2.5 - 300.0 11.97 ± 1.324 11.6 ± 1.226 11.771 ±0.900

Table 6.85: Ratio between R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν using
variable BN.

Eν(GeV) R(Cohπ−) R(Cohπ+) R(Cohπ−)/R(Cohπ+)
2.5-8.0 11.611 ± 4.432 7.82 ±1.230 1.485 ± 0.613
8.0-15.0 18.555 ± 2.800 8.33 ±0.446 2.227 ± 0.357
15.0-20.0 13.017 ± 2.491 7.21 ±0.423 1.805 ± 0.361
20.0-30.0 11.900 ± 1.913 5.65 ±0.303 2.106 ± 0.357
30.0-50.0 8.728 ± 1.620 4.64 ±0.272 1.881 ± 0.366
50.0-100.0 5.464 ± 1.716 3.32 ±0.256 1.646 ± 0.532
100.0-300.0 3.472 ± 2.051 1.76 ±0.342 1.973 ± 1.227
2.5-300.0 11.771 ± 0.900 5.24 ±0.134 2.246 ± 0.181

Table 6.86: Ratio between R=σ(Cohπ−)
σ(ν̄µCC) and R=σ(Cohπ+)

σ(νµCC) as a function of Eν calculated
from a fixed BN.

Eν(GeV) R(Cohπ−) R(Cohπ+) R(Cohπ−)/R(Cohπ+)
2.5-8.0 9.685 ± 4.948 7.82 ± 1.230 1.238 ± 0.662
8.0-15.0 17.926 ± 2.813 8.33 ± 0.446 2.152 ± 0.357
15.0-20.0 13.354 ± 2.382 7.21 ± 0.423 1.852 ± 0.348
20.0-30.0 11.916 ± 1.853 5.69 ± 0.298 2.132 ± 0.350
30.0-50.0 8.872 ± 1.543 4.64 ± 0.268 1.912 ± 0.350
50.0-100.0 6.298 ± 1.410 3.24 ± 0.255 1.944 ± 0.461
100.0-300.0 3.519 ± 1.842 1.86 ± 0.297 1.892 ± 1.035
2.5-300.0 11.771 ± 0.900 5.24 ± 0.134 2.246 ± 0.181
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Table 6.87: Variation of Selection Cuts.

E(GeV) Eπ − σ Eπ + σ θµπ − σ θµπ + σ Pm
T − σ Pm

T + σ |t| − σ |t|+ σ LH − σ LH + σ
2.5-6.0 11.6801 14.9215 -0.0029 1.2152 -0.6940 1.6924 3.1682 4.8313 7.9703 2.0819
6.0-8.0 -8.7922 -13.2404 0.1911 -2.2089 -3.2015 -0.1998 -11.6918 7.8951 -6.5333 3.0169
8.0-10.0 2.9775 -0.3931 0.6583 -0.2867 1.3526 0.0433 -6.7592 3.8665 -0.2399 1.7187
10.0-12.0 2.3871 -3.4039 -0.0359 0.6659 -1.5546 -0.1880 -5.0496 9.1302 -2.7272 1.0839
12.0-15.0 0.1747 -1.2485 2.1770 1.7885 0.7135 1.4232 -3.2093 5.4010 0.8625 1.5466
15.0-20.0 1.0206 0.7432 0.4749 -0.3013 -0.1227 0.0429 -6.9257 3.4628 -0.8809 0.8849
20.0-25.0 -0.5879 1.8357 1.1529 0.1288 0.9869 0.4498 -2.6667 5.2470 0.5167 2.3634
25.0-30.0 1.0098 -0.3757 0.3817 0.9409 0.9814 -0.1689 -2.1256 5.3498 1.5725 1.5785
30.0-40.0 0.8639 -1.2536 0.4798 -1.2473 0.1509 -0.3995 -6.4679 4.9091 -0.2745 2.1057
40.0-50.0 -0.1103 -1.1908 0.8992 -1.5585 -0.5193 0.8160 -8.4046 5.0322 1.8468 2.2545
50.0-70.0 0.5876 1.4756 0.6383 -0.4734 -0.7513 -0.1182 -9.1249 5.5142 -2.7839 0.9751
70.0-100.0 -0.0111 -1.6245 1.9125 -0.3689 3.0378 -1.6033 -10.5984 7.0058 -6.2656 2.6411
100.0-130.0 3.1054 -1.0962 -0.4299 -1.6977 -0.2720 -0.0633 -21.2723 -3.5256 -2.0776 3.8175
130.0-300.0 -0.4959 -3.8586 -0.9748 6.6181 -0.8720 -1.7911 3.5501 -0.8281 2.5231 6.4279
2.5-300.0 0.6386 -0.6010 0.7517 -0.0230 0.2123 0.0910 -5.8974 5.0962 -0.6228 0.3345
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Variation of Selection Cuts

Table 6.87 shows the variation of the preslection variable cuts of coherent π+ in

Neutrino Beam Mode Data analysis. For the variable Eπ, θµπ, Pm
T , and the slope of t,

change the parameters that we care about by ± σ, and get the fully corrected signal

as N’, assuming the nominal is N, the error is (N ′ −N)/N .

Variation of Neutrino and Anti-neutrino Flux

As the description in NOMAD flux, the neutrinos in the beam originate from the

decay of mesons produced through four different mechanisms: proton-Be interactions

in the target, proton interactions downstream of the target in material other than

beryllium, re-interactions of particles in the target and interactions of particles down-

stream of the target. These four sources all contribute the systematic uncertainties

which are described in paper [8].
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Fig. 14. Total energy-dependent uncertainties on the yields of each of the four
neutrino species. The energy-independent uncertainties are listed in Table 5.

the νµ flux, 0.8% in the νe flux and 0.5% in the νe/νµ ratio.

7.4 Summary of systematic uncertainties

The overall energy-dependent uncertainties are shown in Fig. 14 for the four
neutrino species and in Fig. 15 for the νe/νµ ratio. The normalization system-
atic uncertainties are summarized in Table 5.

It should be noted that the normalization uncertainties of the νµ and νe com-

33

Figure 6.88: Total energy-dependent uncertainties on the yields of each of the neutrino
species(νµ and ν̄µ).

Figure 6.88 shows the energy-dependent uncertainties of neutrino and anti-neutrino

flux [8].
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Cross-section Uncertainties

Table 6.88: The error of cross-section of charged current resonance and coherent ρ
events in 14 bins.

Evis(GeV) CCres-σ CCRes+σ CCCohρ− σ CCCohρ− σ
2.5-6.0 7.3905 -1.5665 1.4230 -1.0336
6.0-8.0 -4.7827 -2.9778 -5.8231 1.2684
8.0-10.0 0.6041 -1.4013 1.3472 1.6682
10.0-12.0 -2.4972 0.8300 -1.4289 -0.1821
12.0-15.0 0.9553 1.1081 -0.6609 1.0299
15.0-20.0 -0.9298 -0.5188 -1.7648 0.6175
20.0-25.0 0.4320 2.4922 -1.5011 2.6735
25.0-30.0 2.2773 1.2459 -0.5308 3.9376
30.0-40.0 -0.0182 -1.8955 -2.3173 1.2494
40.0-50.0 1.7604 2.7377 -3.1267 3.4498
50.0-70.0 -2.9851 -0.0075 -2.4287 2.3243
70.0-100.0 -6.4030 2.6083 -2.7508 0.7109
100.0-130.0 -2.2339 -5.3554 -6.4215 1.7497
130.0-300.0 2.4863 9.4299 -1.1441 8.1019
2.5-300.0 -0.3841 0.4714 -1.6963 1.6761

Table 6.88 shows the uncertainties originated from the calculation of cross-sections

of charged current resonance and coherent events. Similar to the calculation of the

variation of selection cuts, the error of cross-section is also calculated by changing the

parameter by ±σ, and get the new fully corrected signal as N’, assuming the nominal

is N, then the error is (N ′ −N)/N . The σ of charged current resonance is 7% which

is from the NOMAD measurement [46]. The σ of charged current coherent ρ+ is 8%

which is also from the NOMAD measurement [45]. In this table, we only listed the

charged current and resonance and coherent ρ+ processes error, compared to these

two, the quasi-elastic is negligible, we use control region to reweight essentially DIS.

Therefore only these two need to be considered.
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Table 6.89: Summary of experimental measurements of coherent π− production in ν̄µ
CC interactions.

Experiment Pub.
Year Eν(GeV) σ(Coh-π−)

(10−40cm2/nucleus)
σ(Cohπ2))
σCC

×10−3

BEBC 1986 40(5-200) 175±25 9±1
SKAT 1986 7(3-20) 113±35 18±5
FNAL 15’BC 1989 70(40-300) 270±110 5.7±2.2
CHARM II 1993 19.1 139±40(RS)

132±32(BS)
NOMAD 2015 16.5(2.5-300) 9.865 ± 0.730

6.9 Comparison with Previous Measurements

In Table 6.89, there is a summary of experimental measurements including the result

that I measured from NOMAD data. We could see that this is the first measurement

of coherent π− production after over 22 years and gives the best measurement to

date.
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Chapter 7

Coherent Rho and Absolute Flux Measurement

7.1 Neutrino Induced Coherent ρ0 & ρ+

The research on coherent ρ is very important in understanding of coherent processes,

because the vector current is assumed to be dominated by the ρ meson (JP = 1−),

whereas the axial current is dominated by the a1 meson (JP = 1+). Different from the

coherent ρ+, much of information of the neutral current coherent ρ0 events is difficult

to measure directly, for example, the momentum transfer Q2 and variables related

to it. On the theoretical side, there is a certain connection between the coherent ρ0

and coherent ρ+ or coherent ρ−. In Chapter 3, the cross-section of coherent ρ± and

coherent ρ0 have been calculated.

7.2 Photo-production of Coherent ρ0

Beside the neutrino induced coherent ρ+ process, photo-production of the coherent ρ0

process can also be used to predict the information of neutrino induced coherent ρ0,

and has the following advantages compared to neutrino induced coherent ρ+. First,

the momentum transfer squared Q2 and other related kinematic variables could be

calculated; Second, different from the neutrinos, the incoming flux of electrons is

easy to detect or measure as compared to neutrinos. In this section, the cross-section

of photo-production of coherent ρ0 is calculated using the Vector Dominance Model

similar as the calculation of neutrino induced coherent ρ events. The process is shown

in Figure 7.1 diagrammatically.
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e− e−

ρ0 ρ0

N N

Figure 7.1: Feynman diagram of photon induced coherent ρ process.

Using Feynman Rules, we have

M = −ieūefγµuei
igµν
q2 < 0|jνem|ρ0

j > (−ie)

Aj(ρ0α→ β)× i

q2 −m2
ρ

= −e2ūefγ
µuei

gµν
q2 < 0|jνem|ρ0

j > Aj(ρ0α→ β)× i

q2 −m2
ρ

= e2ūefγ
µuei

gµν
Q2 < 0|jνem|ρ0

j > Aj(ρ0α→ β)× i

Q2 +m2
ρ

, (7.1)

where j is polarization index number. For the decay constant part, we may write

< 0|jνem|ρ0
j > = < 0|ūγνuqu + d̄γνdqd|

1√
2

(uū− dd̄) >

= 1√
2

(< 0|ūγνuqu|uū > − < 0|d̄γνdqd|dd̄ >)

= 1√
2
fρmρε

ν
j , (7.2)
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where the flavor structure of ρ0 has been used:

ρ0 = 1√
2

(uū− dd̄). (7.3)

qu,d are electrical charges of u, d quarks respectively. Eventually, we obtain

M = e2ūefγ
µuei

gµν
Q2

1√
2
fρmρε

ν
jAj(ρ0α→ β)× i

Q2 +m2
ρ

= e2
√

2
fρmρ2ūefγµueiεµjAj(ρ0α→ β)× i

Q2 +m2
ρ

. (7.4)

Compare this to the scattering amplitude with the neutrino induced coherent ρ0,

we might come to the conclusion that, the differences between the two come from

three parts:

• Electromagnetic interaction vertex e2
√

2 = 4πα√
2 ; Weak interaction vertex GF

2 (1 −

2 sin2 θW )

• Photon propagator ∼ 1
Q2 ; Z0 propagator ∼ 1

Q2+m2
Z
in weak interactionm2

Z � Q2

then, we have 1
Q2+m2

Z
∼ 1

m2
Z
, already included in GF ;

• The leptronic tensor:

For Electromagnetic interaction

Tr{ūefγµueiūeiγαuef} = Tr{uef ūefγµueiūeiγα}

= 1
2Tr{( /Pf +me)γµ( /Pi +me)γα}

= 1
2Tr{ /Pfγ

µ /Piγ
α +m2

eγ
µγα}. (7.5)

Since m2
e is very small, after ignoring it, we obtain

Tr{ūefγµueiūeiγαuef} = 1
2Tr{ /Pfγ

µ /Piγ
α}

= 1
2 × 4(P µ

f P
α
i − Pf · Pigµα + Pα

f P
µ
i )

= 2(P µ
f P

α
i − Pf · Pigµα + Pα

f P
µ
i ). (7.6)
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Combine all the three terms together, we have:

dσ(e+N → e+ ρ0 +N)
dσ(ν +N → ν + ρ0 +N) =

(4πα√
2 )2( 1

Q2 )222

GF
2

2(1− 2 sin2 θW )2 × 82

= 32π2α2

Q4 × 16×G2
F (1− 2 sin2 θW )2

= 2π2α2

G2
F (1− 2 sin2 θW )2 ×Q4 . (7.7)

7.3 Connection Between the Neutrino- & Photo-production of Coh-

-Rho: Absolute Flux

From the ratio of the cross-sections of photon and neutrino induced coherent ρ0

processes, we have

dσ(e+N → e+ ρ0 +N)
dQ2dνdt

= 2π2α2

G2
F (1− 2 sin2 θW )2Q4

×dσ(ν +N → ν + ρ0 +N)
dQ2dνdt

(7.8)

The factor Q4 in the denominator implies the cross-section would be infinitely

large when Q2 → 0, and the integral over Q2 would be divergent. Ignoring the

lepton’s mass, we would have Q2 ' 4EE ′ sin2 θ
2 , where E and E’ are incoming lepton

and outgoing lepton energies. We can see that the infinity appears at θ = 0. This is

a property of Coulomb Scattering. We could divide the integral into two parts:
∫ a

0

dσ

dQ2dνdt
=
∫ ε

0

dσ

dQ2dνdt
+
∫ a

ε

dσ

dQ2dνdt
. (7.9)

The first term is divergent, and the second term is finite. This means that the number

of events with Q2 between 0 and ε is too large compared to the events with Q2 between

ε and a. Practically, we could introduce a cut-off to avoid divergence.

It is easy to deduce the relation between the photon induced process and the

neutrino induced coherent ρ± processes from Equation (3.117) and Equation (7.8):

dσ(e+N → e+ ρ0 +N)
dQ2dνdt

= π2α2

G2
FQ

4
dσ(ν +N → µ+ ρ+ +N)

dQ2dνdt
. (7.10)
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7.4 Simulation of Coherent ρ+ Production

The simulation of the coherent ρ+ events is based on the Neglib package which is

used to simulate the Monte Carlo events of coherent π+ using NOMAD flux. The

procedure includes:

• Set Input Variables: Instead of using the NOMAD flux, LBNF flux was used

as the incoming flux. Since the design of HIRESMNU is based on the experience

of NOMAD detector, the target used in the simulation of Coherent ρ+ is the

same as in the Neglib package. Because the output of the StandAlone Code will

be used to GENIE(Generates Events for Neutrino Interaction Experiments), all

the codes are written in C++. The mass of the coherent meson (ρ+) was

generated randomly according to the distribution of relativistic breit wigner

formula which is:

f(E) = k

(E2 −M2)2 +M2Γ2,
(7.11)

where

k = 2
√

2MΓγ
π2
√
M2 + γ

,

γ =
√
M2(M2 + Γ2). (7.12)

Xbj and Ybj are generated randomly from 0 to 1. The lepton energy(Elep) is

calculated from the Eν and Ybj (Elep=Eν×(1-Ybj)). The |t| is also calculated

from a random number, which is

|t| = −1
b
× ln(Rand), (7.13)

where the slope parameter b is calculated according to Equation(9) in Rein and

Sehgal’s paper[44]. Rand represents a random number from 0 to 1. After setting

the input values of Eν , Xbj, Ybj, mass of meson mρ, some other variables like

ν, Q2, W 2 could be calculated from these three variables.
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• Perform a Number of Kinematic boundaries: After generating the four

input variables, we then apply some kinematic boundary cuts to select the

physical events, including, maximum of Xbj, maximum of Ybj, minimum of

Ybj, maximum of t, minimum of t and so on which are consistent to the values

in Neglib package.

• Cross-Section Calculation: the cross-section of coherent ρ+ could be calcu-

lated from the variables generated and calculated for each event.

• Reweight Distribution to Get Photo-production Coherent ρ0 Events

Using the result of Equation (7.7), reweighted all the variable distributions of

Coherent ρ+, we then obtain the distributions of all the corresponding variables

in photo-production coherent ρ+ events.

To get the Q2 distribution of e + A → e + A + ρ0, we just need to reweight the

corresponding distribution of neutrino induced coherent ρ+ process by factor π2α2

G2
FQ

4 .

However, for other variables, we could not do this simply. What we can do is, sup-

pose, we want to get the distribution of variable X: First, we need to create the

2-dimensional distribution of X and Q2, then reweight each bin by this factor; Sec-

ond, integrate over Q2, then we get the distribution of variable X.

Since the ratio of the cross-section between photon induced and neutrino induced

coherent processes is a function of Q2, it is reasonable to consider Q2 first. To avoid

the condition that Q2 = 0, I applied a lower cut value of Q2, which is 0.02 GeV2 (we

could also set this cut value from experimental experience).

The analysis was done with the C++ standAlone code I wrote based on the

Neglib package. Figure 7.2 is the distribution of Q2 of neutrino induced coherent

ρ+ events vs photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 . Similar plots for other important variables are

shown from Figure 7.3 to Figure 7.7.
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Figure 7.2: Q2 distribution of neutrino induced coherent ρ+ events generated from
LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Figure 7.3: Xbj distribution of neutrino induced coherent ρ+ events generated from
LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Figure 7.4: Ybj distribution of neutrino induced coherent ρ+ events generated from
LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Figure 7.5: Pm
T distribution of neutrino induced coherent ρ+ events generated from

LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Figure 7.6: ζρ distribution of neutrino induced coherent ρ+ events generated from
LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Figure 7.7: t distribution of neutrino induced coherent ρ+ events generated from
LBNE flux and photon induced coherent events obtained from ν-induced coherent ρ+

events reweighted by factor π2α2

G2
FQ

4 .
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Chapter 8

Summary and Future Work

Using the CVC, PCAC hypothesis, and Hadron Dominance Model, I calculated the

the neutrino induced coherent π, and coherent ρ. I also calculated the cross-section

of photon induce coherent ρ0 process and the ratio between the photon induced

coherent ρ0 and neutrino induced coherent ρ which gives a way to get additional

information to constrain the neutrino fluxes. Beside the theoretical calculations, I

measured the ratio between cross-section of coherent π− and ν̄µ CC interactions with

the NOMAD data including neutrino beam mode data and anti-neutrino beam mode

data, and compared it to the measurement of coherent π+ production. This is the

best measurement of coherent π− to date. Based upon the experience of analysis

with NOMAD data, my final aim is to evaluate the sensitivity of ELBNF/DUNE

project to coherent process. Then, in the second part, I used new C++ standAlone

Code I wrote and simulated coherent ρ+ interactions. After that, I reweighted the

distributions of some kinematic variables with the factor (ratio between cross-section

of photon induced and neutrino induced coherent ρ process). I calculated and get the

corresponding distributions of photon induced coherent process.

In the future, I will integrate the C++ simulation package I wrote into the GEINE

neutrino event generator which is written in C++. GENIE is a comprehensive neu-

trino Monte Carlo generator supported and developed by an international collabo-

ration of scientists [6]. The GENIE model is universal. It handles all neutrinos and

nuclear targets, and all processes relevant from MeV to PeV energy scales. Some ex-

periments(including T2K, NoνA, MINERνA, MicroBooNE, LAr1-ND, ELBNF and
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IceCUBE) use GENIE whose predictions is a standard reference point for the entire

community.
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Appendix A

CP violation

νCP = γ0Cν̄T = −Cν∗ (A.1)

C: Particle
 Antiparticle P: Left-Handed
 Right-handed Neutrino fields under CP

transformation is [17]:

ναL =
∑

k

UαkνkLCP−→ν
CP
αL =

∑

k

U∗αkν
CP
kl (A.2)

|να〉 =
∑

k

U∗αk|νk〉CP−→|ν̄α〉 =
∑

k

Uαk|ν̄k〉 (A.3)

Neutrinos U 
 U∗ Antineutrinos

Pνα→νβ(L,E) =
∑

k

|Uαk|2|Uβk|2 + 2Re
∑

k>j

U∗αkUβkUαjU
∗
βj exp(−i∆m

2
kjL

2E ) (A.4)

Pν̄α→ν̄β(L,E) =
∑

k

|Uαk|2|Uβk|2 + 2Re
∑

k>j

UαkU
∗
βkU

∗
αjUβj exp(−i∆m

2
kjL

2E ) (A.5)

PMNS(Pontecorvo-Maki-Nakagawa-SaKata) Neutrino Mixing Matrix is a unitary

matrix which cantains information on the mismatch of quantum states of leptons

when they propagate freely and when they take part in the weak interactions. It

is important in the understanding of neutrino oscillations. For three generations of
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leptons, the matrix can be written as [17]:

U = R23W13R12D(λ)

=




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ13

0 1 0

−s13e
iδ13 0 c13







c12 s12 0

−s12 c13 0

0 0 1




×




1 0 0

0 eiλ21 0

0 0 eiλ31




=




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23e
0δ13i c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13




×




1 0 0

0 eiλ21 0

0 0 eiλ31




(A.6)

PMNS Neutrino Mixing Matrix Then, Pνµ→νe − Pν̄µ→ν̄e could be used as a direct

test of CP symmetry,

Pνµ→νe − Pν̄µ→ν̄e = 2Re
∑

k>j

[U∗αkUβkUαjU∗βj − UαkU∗βkU∗αjUβj] exp(−i∆m
2
kjL

2E )

4Re
∑

k>j

i=[U∗αkUβkUαjU∗βj] exp(−i∆m
2
kjL

2E )

= 4
∑

k>j

[U∗αkUβkUαjU∗βj] sin(
∆m2

kjL

2E ) (A.7)

where J = =[U∗αkUβkUαkU∗βj] is is called a Jarlskog invariant, from the quark CKM
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unitary triangle

J = c12s12c23s23c
2
13s13 sin δ

= 1
2 sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ

= 4
∑

k>j

=[U∗αkUβkUαjU∗βj] sin(
∆m2

kjL

2E )

= sin δ sin 2θ12 sin 2θ23 sin θ13 cos2 θ13 sin(∆m2
31L

2E )

− sin δ sin 2θ12 sin 2θ23 sin θ13 cos2 θ13 sin(∆m2
32L

2E )

− sin δ sin 2θ12 sin 2θ23 sin θ13 cos2 θ13 sin(∆m2
21L

2E ) (A.8)

From Equation (A.8) we could know, that if any angle is zero, ∆P = 0; if any

∆m2 = 0, ∆P = 0;

ACPαβ = 4J
∑

k>j

sαβ;kj sin(
∆m2

kjL

2E ) (A.9)

• s for 31 is -1

• s for 32 is +1

• s for 21 is +1

where, we could see that for e → µ, µ → τ , τ → e, s is positive and the sign flips if

flavors flip.

From the equation above, we could see that to determine the CP violation, first, all

angles should be large; second, the detector should be placed at correct L(baseline) for

neutrino beam E; third, ∆m2
21 is small compared to ∆m2

31. The normal and inverted

hierarchy are

• Normal Hierarchy(NH):∆m2
31 = ∆m2

21 + ∆m2
32,

• Inverted Hierarchy(IH):|∆m2
31| = ∆m2

21 + |∆m2
32|.
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